Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.05598
Cited By
Learning how to explain neural networks: PatternNet and PatternAttribution
16 May 2017
Pieter-Jan Kindermans
Kristof T. Schütt
Maximilian Alber
K. Müller
D. Erhan
Been Kim
Sven Dähne
XAI
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning how to explain neural networks: PatternNet and PatternAttribution"
31 / 81 papers shown
Title
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
40
120
0
26 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
46
82
0
17 Mar 2020
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt
Maximilian Granz
Tim Landgraf
BDL
FAtt
XAI
13
132
0
20 Dec 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,119
0
22 Oct 2019
Towards Best Practice in Explaining Neural Network Decisions with LRP
M. Kohlbrenner
Alexander Bauer
Shinichi Nakajima
Alexander Binder
Wojciech Samek
Sebastian Lapuschkin
22
148
0
22 Oct 2019
Decision Explanation and Feature Importance for Invertible Networks
Juntang Zhuang
Nicha Dvornek
Xiaoxiao Li
Junlin Yang
James S. Duncan
AAML
FAtt
23
5
0
30 Sep 2019
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
436
0
26 Sep 2019
Explaining Convolutional Neural Networks using Softmax Gradient Layer-wise Relevance Propagation
Brian Kenji Iwana
Ryohei Kuroki
S. Uchida
FAtt
32
94
0
06 Aug 2019
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
29
378
0
03 Jul 2019
Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
R. Maurer
AI4CE
29
382
0
24 Jun 2019
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
20
82
0
31 May 2019
Explainability Techniques for Graph Convolutional Networks
Federico Baldassarre
Hossein Azizpour
GNN
FAtt
22
264
0
31 May 2019
Leveraging Latent Features for Local Explanations
Ronny Luss
Pin-Yu Chen
Amit Dhurandhar
P. Sattigeri
Yunfeng Zhang
Karthikeyan Shanmugam
Chun-Chen Tu
FAtt
49
37
0
29 May 2019
Explainable AI for Trees: From Local Explanations to Global Understanding
Scott M. Lundberg
G. Erion
Hugh Chen
A. DeGrave
J. Prutkin
B. Nair
R. Katz
J. Himmelfarb
N. Bansal
Su-In Lee
FAtt
28
286
0
11 May 2019
Software and application patterns for explanation methods
Maximilian Alber
33
11
0
09 Apr 2019
Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations
Fred Hohman
Haekyu Park
Caleb Robinson
Duen Horng Chau
FAtt
3DH
HAI
19
213
0
04 Apr 2019
Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Values Approximation
Marco Ancona
Cengiz Öztireli
Markus Gross
FAtt
TDI
22
223
0
26 Mar 2019
Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
Wieland Brendel
Matthias Bethge
SSL
FAtt
31
557
0
20 Mar 2019
Explaining Neural Networks Semantically and Quantitatively
Runjin Chen
Hao Chen
Ge Huang
Jie Ren
Quanshi Zhang
FAtt
23
54
0
18 Dec 2018
Interactive Naming for Explaining Deep Neural Networks: A Formative Study
M. Hamidi-Haines
Zhongang Qi
Alan Fern
Fuxin Li
Prasad Tadepalli
FAtt
HAI
14
11
0
18 Dec 2018
An Overview of Computational Approaches for Interpretation Analysis
Philipp Blandfort
Jörn Hees
D. Patton
21
2
0
09 Nov 2018
What made you do this? Understanding black-box decisions with sufficient input subsets
Brandon Carter
Jonas W. Mueller
Siddhartha Jain
David K Gifford
FAtt
37
77
0
09 Oct 2018
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo
Justin Gilmer
Ian Goodfellow
Been Kim
FAtt
AAML
19
128
0
08 Oct 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
64
1,931
0
08 Oct 2018
Quantum-chemical insights from interpretable atomistic neural networks
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
AI4CE
33
31
0
27 Jun 2018
EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals
K. Hartmann
R. Schirrmeister
T. Ball
GAN
AI4TS
30
229
0
05 Jun 2018
Adaptive neural network classifier for decoding MEG signals
I. Zubarev
Rasmus Zetter
Hanna-Leena Halme
L. Parkkonen
24
46
0
28 May 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
21
63
0
21 Feb 2018
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
17
809
0
02 Feb 2018
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
45
678
0
02 Nov 2017
Deep Learning Techniques for Music Generation -- A Survey
Jean-Pierre Briot
Gaëtan Hadjeres
F. Pachet
MGen
37
297
0
05 Sep 2017
Previous
1
2