Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.05598
Cited By
Learning how to explain neural networks: PatternNet and PatternAttribution
16 May 2017
Pieter-Jan Kindermans
Kristof T. Schütt
Maximilian Alber
K. Müller
D. Erhan
Been Kim
Sven Dähne
XAI
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning how to explain neural networks: PatternNet and PatternAttribution"
50 / 73 papers shown
Title
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
31
1
0
22 Sep 2024
Implementing local-explainability in Gradient Boosting Trees: Feature Contribution
Ángel Delgado-Panadero
Beatriz Hernández-Lorca
María Teresa García-Ordás
J. Benítez-Andrades
40
52
0
14 Feb 2024
On the Relationship Between Interpretability and Explainability in Machine Learning
Benjamin Leblanc
Pascal Germain
FaML
29
0
0
20 Nov 2023
PAMI: partition input and aggregate outputs for model interpretation
Wei Shi
Wentao Zhang
Weishi Zheng
Ruixuan Wang
FAtt
26
3
0
07 Feb 2023
AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models
Abdullah Çaglar Öksüz
Anisa Halimi
Erman Ayday
ELM
AAML
21
2
0
04 Feb 2023
Explainable AI for Bioinformatics: Methods, Tools, and Applications
Md. Rezaul Karim
Tanhim Islam
Oya Beyan
Christoph Lange
Michael Cochez
Dietrich-Rebholz Schuhmann
Stefan Decker
29
68
0
25 Dec 2022
Data-Adaptive Discriminative Feature Localization with Statistically Guaranteed Interpretation
Ben Dai
Xiaotong Shen
Lingzhi Chen
Chunlin Li
Wei Pan
FAtt
21
1
0
18 Nov 2022
Explainable Deep Learning to Profile Mitochondrial Disease Using High Dimensional Protein Expression Data
Atif Khan
C. Lawless
Amy Vincent
Satish Pilla
S. Ramesh
A. Mcgough
36
0
0
31 Oct 2022
From Attribution Maps to Human-Understandable Explanations through Concept Relevance Propagation
Reduan Achtibat
Maximilian Dreyer
Ilona Eisenbraun
S. Bosse
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
FAtt
30
131
0
07 Jun 2022
Visualizing Deep Neural Networks with Topographic Activation Maps
A. Krug
Raihan Kabir Ratul
Christopher Olson
Sebastian Stober
FAtt
AI4CE
36
3
0
07 Apr 2022
Investigating the fidelity of explainable artificial intelligence methods for applications of convolutional neural networks in geoscience
Antonios Mamalakis
E. Barnes
I. Ebert‐Uphoff
26
73
0
07 Feb 2022
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
Frederik Pahde
Maximilian Dreyer
Leander Weber
Moritz Weckbecker
Christopher J. Anders
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
60
7
0
07 Feb 2022
Deeply Explain CNN via Hierarchical Decomposition
Mingg-Ming Cheng
Peng-Tao Jiang
Linghao Han
Liang Wang
Philip H. S. Torr
FAtt
53
15
0
23 Jan 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability
Sílvia Casacuberta
Esra Suel
Seth Flaxman
FAtt
21
1
0
31 Dec 2021
Evaluating saliency methods on artificial data with different background types
Céline Budding
Fabian Eitel
K. Ritter
Stefan Haufe
XAI
FAtt
MedIm
27
5
0
09 Dec 2021
Improving Deep Learning Interpretability by Saliency Guided Training
Aya Abdelsalam Ismail
H. C. Bravo
S. Feizi
FAtt
20
80
0
29 Nov 2021
Evaluation of Interpretability for Deep Learning algorithms in EEG Emotion Recognition: A case study in Autism
J. M. M. Torres
Sara E. Medina-DeVilliers
T. Clarkson
M. Lerner
Giuseppe Riccardi
30
34
0
25 Nov 2021
Visualizing the Emergence of Intermediate Visual Patterns in DNNs
Mingjie Li
Shaobo Wang
Quanshi Zhang
27
11
0
05 Nov 2021
Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
18
302
0
01 Nov 2021
Interpreting Deep Learning Models in Natural Language Processing: A Review
Xiaofei Sun
Diyi Yang
Xiaoya Li
Tianwei Zhang
Yuxian Meng
Han Qiu
Guoyin Wang
Eduard H. Hovy
Jiwei Li
17
44
0
20 Oct 2021
Discriminative Attribution from Counterfactuals
N. Eckstein
A. S. Bates
G. Jefferis
Jan Funke
FAtt
CML
27
1
0
28 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
38
16
0
20 Sep 2021
This looks more like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation
Srishti Gautam
Marina M.-C. Höhne
Stine Hansen
Robert Jenssen
Michael C. Kampffmeyer
27
49
0
27 Aug 2021
Understanding of Kernels in CNN Models by Suppressing Irrelevant Visual Features in Images
Jiafan Zhuang
Wanying Tao
Jianfei Xing
Wei Shi
Ruixuan Wang
Weishi Zheng
FAtt
37
3
0
25 Aug 2021
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
34
25
0
23 Aug 2021
Towards Interpretable Deep Networks for Monocular Depth Estimation
Zunzhi You
Yi-Hsuan Tsai
W. Chiu
Guanbin Li
FAtt
34
17
0
11 Aug 2021
Improved Feature Importance Computations for Tree Models: Shapley vs. Banzhaf
Adam Karczmarz
A. Mukherjee
Piotr Sankowski
Piotr Wygocki
FAtt
TDI
14
6
0
09 Aug 2021
Software for Dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy
Christopher J. Anders
David Neumann
Wojciech Samek
K. Müller
Sebastian Lapuschkin
29
64
0
24 Jun 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
29
184
0
15 May 2021
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
Natalia Díaz Rodríguez
Alberto Lamas
Jules Sanchez
Gianni Franchi
Ivan Donadello
S. Tabik
David Filliat
P. Cruz
Rosana Montes
Francisco Herrera
49
77
0
24 Apr 2021
Explainable Adversarial Attacks in Deep Neural Networks Using Activation Profiles
G. Cantareira
R. Mello
F. Paulovich
AAML
24
9
0
18 Mar 2021
Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset
Antonios Mamalakis
I. Ebert‐Uphoff
E. Barnes
OOD
28
75
0
18 Mar 2021
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
21
63
0
18 Dec 2020
Self-Explaining Structures Improve NLP Models
Zijun Sun
Chun Fan
Qinghong Han
Xiaofei Sun
Yuxian Meng
Fei Wu
Jiwei Li
MILM
XAI
LRM
FAtt
39
38
0
03 Dec 2020
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
36
241
0
21 Nov 2020
Learning Propagation Rules for Attribution Map Generation
Yiding Yang
Jiayan Qiu
Xiuming Zhang
Dacheng Tao
Xinchao Wang
FAtt
38
17
0
14 Oct 2020
Trustworthy Convolutional Neural Networks: A Gradient Penalized-based Approach
Nicholas F Halliwell
Freddy Lecue
FAtt
22
9
0
29 Sep 2020
A Systematic Literature Review on the Use of Deep Learning in Software Engineering Research
Cody Watson
Nathan Cooper
David Nader-Palacio
Kevin Moran
Denys Poshyvanyk
26
111
0
14 Sep 2020
Survey of XAI in digital pathology
Milda Pocevičiūtė
Gabriel Eilertsen
Claes Lundström
11
56
0
14 Aug 2020
Explainable Face Recognition
Jonathan R. Williford
Brandon B. May
J. Byrne
CVBM
16
71
0
03 Aug 2020
Weakly-Supervised Cell Tracking via Backward-and-Forward Propagation
Kazuya Nishimura
Junya Hayashida
Chenyang Wang
Dai Fei Elmer Ker
Ryoma Bise
26
17
0
30 Jul 2020
Interpreting and Disentangling Feature Components of Various Complexity from DNNs
Jie Ren
Mingjie Li
Zexu Liu
Quanshi Zhang
CoGe
13
18
0
29 Jun 2020
Embedded Encoder-Decoder in Convolutional Networks Towards Explainable AI
A. Tavanaei
XAI
12
31
0
19 Jun 2020
Human-Expert-Level Brain Tumor Detection Using Deep Learning with Data Distillation and Augmentation
D. Lu
N. Polomac
Iskra Gacheva
E. Hattingen
Jochen Triesch
18
18
0
17 Jun 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
27
31
0
16 Jun 2020
Explainable deep learning models in medical image analysis
Amitojdeep Singh
S. Sengupta
Vasudevan Lakshminarayanan
XAI
35
482
0
28 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
38
370
0
30 Apr 2020
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
38
120
0
26 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt
Maximilian Granz
Tim Landgraf
BDL
FAtt
XAI
13
132
0
20 Dec 2019
1
2
Next