ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.01314
  4. Cited By
Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation

Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation

3 May 2017
Yen-Cheng Liu
Yu-Ying Yeh
Tzu-Chien Fu
Sheng-De Wang
Wei-Chen Chiu
Y. Wang
    DRL
    OOD
ArXivPDFHTML

Papers citing "Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation"

4 / 4 papers shown
Title
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
33
134
0
07 Jun 2019
Robustly Disentangled Causal Mechanisms: Validating Deep Representations
  for Interventional Robustness
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CML
OOD
DRL
19
159
0
31 Oct 2018
Structured Generative Adversarial Networks
Structured Generative Adversarial Networks
Zhijie Deng
Huatian Zhang
Xiaodan Liang
Luona Yang
Shizhen Xu
Jun Zhu
Eric Xing
GAN
31
53
0
02 Nov 2017
Conditional Image Synthesis With Auxiliary Classifier GANs
Conditional Image Synthesis With Auxiliary Classifier GANs
Augustus Odena
C. Olah
Jonathon Shlens
GAN
250
3,191
0
30 Oct 2016
1