Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.08847
Cited By
v1
v2 (latest)
Parseval Networks: Improving Robustness to Adversarial Examples
28 April 2017
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Parseval Networks: Improving Robustness to Adversarial Examples"
50 / 489 papers shown
Title
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
118
73
0
07 Aug 2020
Improve Generalization and Robustness of Neural Networks via Weight Scale Shifting Invariant Regularizations
Ziquan Liu
Yufei Cui
Antoni B. Chan
122
13
0
07 Aug 2020
Hardware Accelerator for Adversarial Attacks on Deep Learning Neural Networks
Haoqiang Guo
Lu Peng
Jian Zhang
Fang Qi
Lide Duan
AAML
47
6
0
03 Aug 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
89
58
0
08 Jul 2020
Fast Training of Deep Neural Networks Robust to Adversarial Perturbations
Justin A. Goodwin
Olivia M. Brown
Victoria Helus
OOD
AAML
27
3
0
08 Jul 2020
Robust Learning with Frequency Domain Regularization
Weiyu Guo
Yidong Ouyang
AAML
36
2
0
07 Jul 2020
On Connections between Regularizations for Improving DNN Robustness
Yiwen Guo
Long Chen
Yurong Chen
Changshui Zhang
AAML
51
14
0
04 Jul 2020
Efficient Proximal Mapping of the 1-path-norm of Shallow Networks
Fabian Latorre
Paul Rolland
Nadav Hallak
Volkan Cevher
AAML
67
4
0
02 Jul 2020
Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey
S. Silva
Peyman Najafirad
AAML
OOD
106
135
0
01 Jul 2020
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
Xinyu Wang
Yi-An Ma
Jitendra Malik
VLM
102
55
0
30 Jun 2020
Lipschitzness Is All You Need To Tame Off-policy Generative Adversarial Imitation Learning
Lionel Blondé
Pablo Strasser
Alexandros Kalousis
90
22
0
28 Jun 2020
A general framework for defining and optimizing robustness
Alessandro Tibo
M. Jaeger
Kim G. Larsen
22
0
0
19 Jun 2020
Model-Aware Regularization For Learning Approaches To Inverse Problems
Jaweria Amjad
Zhaoyang Lyu
M. Rodrigues
MedIm
18
0
0
18 Jun 2020
Globally Injective ReLU Networks
Michael Puthawala
K. Kothari
Matti Lassas
Ivan Dokmanić
Maarten V. de Hoop
103
28
0
15 Jun 2020
On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix Theory
Alexandre Araujo
Benjamin Négrevergne
Y. Chevaleyre
Jamal Atif
45
0
0
15 Jun 2020
On Saliency Maps and Adversarial Robustness
Puneet Mangla
Vedant Singh
V. Balasubramanian
AAML
47
17
0
14 Jun 2020
Rethinking Clustering for Robustness
Motasem Alfarra
Juan C. Pérez
Adel Bibi
Ali K. Thabet
Pablo Arbelaez
Guohao Li
OOD
41
0
0
13 Jun 2020
Achieving robustness in classification using optimal transport with hinge regularization
M. Serrurier
Franck Mamalet
Alberto González Sanz
Thibaut Boissin
Jean-Michel Loubes
E. del Barrio
AAML
58
40
0
11 Jun 2020
Towards an Intrinsic Definition of Robustness for a Classifier
Théo Giraudon
Vincent Gripon
Matthias Löwe
Franck Vermet
OOD
AAML
25
2
0
09 Jun 2020
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
96
146
0
08 Jun 2020
All your loss are belong to Bayes
Christian J. Walder
Richard Nock
61
5
0
08 Jun 2020
Distributional Robustness with IPMs and links to Regularization and GANs
Hisham Husain
70
22
0
08 Jun 2020
Rethinking Empirical Evaluation of Adversarial Robustness Using First-Order Attack Methods
Kyungmi Lee
A. Chandrakasan
ELM
AAML
69
3
0
01 Jun 2020
Quantized Neural Networks: Characterization and Holistic Optimization
Yoonho Boo
Sungho Shin
Wonyong Sung
MQ
78
8
0
31 May 2020
Exploring Model Robustness with Adaptive Networks and Improved Adversarial Training
Zheng Xu
Ali Shafahi
Tom Goldstein
AAML
51
2
0
30 May 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
78
46
0
28 May 2020
Model-Based Robust Deep Learning: Generalizing to Natural, Out-of-Distribution Data
Alexander Robey
Hamed Hassani
George J. Pappas
OOD
103
43
0
20 May 2020
Cross-Lingual Low-Resource Set-to-Description Retrieval for Global E-Commerce
Juntao Li
Chang Liu
Jian Wang
Lidong Bing
Hongsong Li
Xiaozhong Liu
Dongyan Zhao
Rui Yan
46
12
0
17 May 2020
Lifted Regression/Reconstruction Networks
R. Høier
Christopher Zach
31
7
0
07 May 2020
Training robust neural networks using Lipschitz bounds
Patricia Pauli
Anne Koch
J. Berberich
Paul Kohler
Frank Allgöwer
90
163
0
06 May 2020
CWY Parametrization: a Solution for Parallelized Optimization of Orthogonal and Stiefel Matrices
Valerii Likhosherstov
Jared Davis
K. Choromanski
Adrian Weller
38
4
0
18 Apr 2020
On Adversarial Examples and Stealth Attacks in Artificial Intelligence Systems
I. Tyukin
D. Higham
A. Gorban
AAML
46
39
0
09 Apr 2020
Controllable Orthogonalization in Training DNNs
Lei Huang
Li Liu
Fan Zhu
Diwen Wan
Zehuan Yuan
Bo Li
Ling Shao
87
44
0
02 Apr 2020
Dataless Model Selection with the Deep Frame Potential
Calvin Murdock
Simon Lucey
84
6
0
30 Mar 2020
What Deep CNNs Benefit from Global Covariance Pooling: An Optimization Perspective
Qilong Wang
Li Zhang
Banggu Wu
Dongwei Ren
P. Li
W. Zuo
Q. Hu
75
21
0
25 Mar 2020
Defense Through Diverse Directions
Christopher M. Bender
Yang Li
Yifeng Shi
Michael K. Reiter
Junier B. Oliva
AAML
51
4
0
24 Mar 2020
Double Backpropagation for Training Autoencoders against Adversarial Attack
Chengjin Sun
Sizhe Chen
Xiaolin Huang
SILM
AAML
81
5
0
04 Mar 2020
Exactly Computing the Local Lipschitz Constant of ReLU Networks
Matt Jordan
A. Dimakis
89
112
0
02 Mar 2020
Improving Robustness of Deep-Learning-Based Image Reconstruction
Ankit Raj
Y. Bresler
Yue Liu
OOD
AAML
96
51
0
26 Feb 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
62
406
0
26 Feb 2020
Gradient
ℓ
1
\ell_1
ℓ
1
Regularization for Quantization Robustness
Milad Alizadeh
Arash Behboodi
M. V. Baalen
Christos Louizos
Tijmen Blankevoort
Max Welling
MQ
58
8
0
18 Feb 2020
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
64
15
0
18 Feb 2020
ResiliNet: Failure-Resilient Inference in Distributed Neural Networks
Ashkan Yousefpour
Brian Q. Nguyen
Siddartha Devic
Guanhua Wang
Aboudy Kreidieh
Hans Lobel
Alexandre M. Bayen
J. Jue
48
2
0
18 Feb 2020
Regularized Training and Tight Certification for Randomized Smoothed Classifier with Provable Robustness
Huijie Feng
Chunpeng Wu
Guoyang Chen
Weifeng Zhang
Y. Ning
AAML
71
11
0
17 Feb 2020
Generalised Lipschitz Regularisation Equals Distributional Robustness
Zac Cranko
Zhan Shi
Xinhua Zhang
Richard Nock
Simon Kornblith
OOD
86
21
0
11 Feb 2020
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
69
34
0
05 Feb 2020
Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley Transform
Jun Li
Fuxin Li
S. Todorovic
89
107
0
04 Feb 2020
REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild
Rahul Duggal
Scott Freitas
Cao Xiao
Duen Horng Chau
Jimeng Sun
127
22
0
29 Jan 2020
PaRoT: A Practical Framework for Robust Deep Neural Network Training
Edward W. Ayers
Francisco Eiras
Majd Hawasly
I. Whiteside
OOD
97
19
0
07 Jan 2020
ATHENA: A Framework based on Diverse Weak Defenses for Building Adversarial Defense
Meng
Jianhai Su
Jason M. O'Kane
Pooyan Jamshidi
AAML
57
7
0
02 Jan 2020
Previous
1
2
3
...
10
5
6
7
8
9
Next