Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.08847
Cited By
v1
v2 (latest)
Parseval Networks: Improving Robustness to Adversarial Examples
28 April 2017
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Parseval Networks: Improving Robustness to Adversarial Examples"
39 / 489 papers shown
Title
L2-Nonexpansive Neural Networks
Haifeng Qian
M. Wegman
75
74
0
22 Feb 2018
i-RevNet: Deep Invertible Networks
J. Jacobsen
A. Smeulders
Edouard Oyallon
85
334
0
20 Feb 2018
Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples
Felix Kreuk
A. Barak
Shir Aviv-Reuven
Moran Baruch
Benny Pinkas
Joseph Keshet
AAML
75
118
0
13 Feb 2018
Predicting Adversarial Examples with High Confidence
A. Galloway
Graham W. Taylor
M. Moussa
AAML
56
9
0
13 Feb 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
117
309
0
12 Feb 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
131
940
0
09 Feb 2018
Fibres of Failure: Classifying errors in predictive processes
L. Carlsson
Gunnar Carlsson
Mikael Vejdemo-Johansson
AI4CE
107
4
0
09 Feb 2018
First-order Adversarial Vulnerability of Neural Networks and Input Dimension
Carl-Johann Simon-Gabriel
Yann Ollivier
Léon Bottou
Bernhard Schölkopf
David Lopez-Paz
AAML
111
48
0
05 Feb 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
130
969
0
29 Jan 2018
Fooling End-to-end Speaker Verification by Adversarial Examples
Felix Kreuk
Yossi Adi
Moustapha Cissé
Joseph Keshet
AAML
86
203
0
10 Jan 2018
Adversarial Spheres
Justin Gilmer
Luke Metz
Fartash Faghri
S. Schoenholz
M. Raghu
Martin Wattenberg
Ian Goodfellow
AAML
74
7
0
09 Jan 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
146
1,873
0
02 Jan 2018
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
109
174
0
26 Dec 2017
Towards Practical Verification of Machine Learning: The Case of Computer Vision Systems
Kexin Pei
Linjie Zhu
Yinzhi Cao
Junfeng Yang
Carl Vondrick
Suman Jana
AAML
111
103
0
05 Dec 2017
Improving Network Robustness against Adversarial Attacks with Compact Convolution
Rajeev Ranjan
S. Sankaranarayanan
Carlos D. Castillo
Rama Chellappa
AAML
65
14
0
03 Dec 2017
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
89
250
0
30 Nov 2017
ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases
Pierre Stock
Moustapha Cissé
FaML
94
46
0
30 Nov 2017
On the Robustness of Semantic Segmentation Models to Adversarial Attacks
Anurag Arnab
O. Mikšík
Philip Torr
AAML
115
308
0
27 Nov 2017
Intriguing Properties of Adversarial Examples
E. D. Cubuk
Barret Zoph
S. Schoenholz
Quoc V. Le
AAML
86
85
0
08 Nov 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
207
1,506
0
02 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
151
1,409
0
31 Oct 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
145
791
0
30 Oct 2017
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
153
875
0
29 Oct 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
323
9,831
0
25 Oct 2017
Word Translation Without Parallel Data
Alexis Conneau
Guillaume Lample
MarcÁurelio Ranzato
Ludovic Denoyer
Hervé Jégou
309
1,663
0
11 Oct 2017
Orthogonal Weight Normalization: Solution to Optimization over Multiple Dependent Stiefel Manifolds in Deep Neural Networks
Lei Huang
Xianglong Liu
B. Lang
Adams Wei Yu
Yongliang Wang
Bo Li
ODL
95
231
0
16 Sep 2017
Art of singular vectors and universal adversarial perturbations
Valentin Khrulkov
Ivan Oseledets
AAML
78
132
0
11 Sep 2017
DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars
Yuchi Tian
Kexin Pei
Suman Jana
Baishakhi Ray
AAML
99
1,365
0
28 Aug 2017
Houdini: Fooling Deep Structured Prediction Models
Moustapha Cissé
Yossi Adi
Natalia Neverova
Joseph Keshet
AAML
96
272
0
17 Jul 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
345
1,225
0
26 Jun 2017
Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations
A. Bietti
Julien Mairal
68
8
0
09 Jun 2017
Kronecker Recurrent Units
C. Jose
Moustapha Cissé
François Fleuret
ODL
139
46
0
29 May 2017
MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks
Chang Song
Hsin-Pai Cheng
Huanrui Yang
Sicheng Li
Chunpeng Wu
Qing Wu
H. Li
Yiran Chen
AAML
59
2
0
27 May 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
131
512
0
23 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
217
2,738
0
19 May 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
142
1,376
0
18 May 2017
Optimization on Product Submanifolds of Convolution Kernels
Mete Ozay
Takayuki Okatani
AAML
33
0
0
22 Jan 2017
A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
Thomas Wiatowski
Helmut Bölcskei
FAtt
90
366
0
19 Dec 2015
Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization
Uri Shaham
Yutaro Yamada
S. Negahban
AAML
84
78
0
17 Nov 2015
Previous
1
2
3
...
10
8
9