ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.04289
  4. Cited By
Stochastic Gradient Descent as Approximate Bayesian Inference
v1v2 (latest)

Stochastic Gradient Descent as Approximate Bayesian Inference

13 April 2017
Stephan Mandt
Matthew D. Hoffman
David M. Blei
    BDL
ArXiv (abs)PDFHTML

Papers citing "Stochastic Gradient Descent as Approximate Bayesian Inference"

23 / 23 papers shown
Title
Reinforcement Teaching
Reinforcement Teaching
Alex Lewandowski
Calarina Muslimani
Dale Schuurmans
Matthew E. Taylor
Jun Luo
185
2
0
28 Jan 2025
Soft Condorcet Optimization for Ranking of General Agents
Soft Condorcet Optimization for Ranking of General Agents
Marc Lanctot
Kate Larson
Michael Kaisers
Quentin Berthet
I. Gemp
Manfred Diaz
Roberto-Rafael Maura-Rivero
Yoram Bachrach
Anna Koop
Doina Precup
227
0
0
31 Oct 2024
Variational Stochastic Gradient Descent for Deep Neural Networks
Variational Stochastic Gradient Descent for Deep Neural Networks
Haotian Chen
Anna Kuzina
Babak Esmaeili
Jakub M. Tomczak
69
0
0
09 Apr 2024
The Implicit Regularization of Stochastic Gradient Flow for Least
  Squares
The Implicit Regularization of Stochastic Gradient Flow for Least Squares
Alnur Ali
Yan Sun
Robert Tibshirani
70
77
0
17 Mar 2020
On the Convergence of Stochastic Gradient MCMC Algorithms with
  High-Order Integrators
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
73
162
0
21 Oct 2016
The Generalized Reparameterization Gradient
The Generalized Reparameterization Gradient
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
BDL
95
169
0
07 Oct 2016
Bridging the Gap between Stochastic Gradient MCMC and Stochastic
  Optimization
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization
Changyou Chen
David Carlson
Zhe Gan
Chunyuan Li
Lawrence Carin
67
90
0
25 Dec 2015
Stochastic modified equations and adaptive stochastic gradient
  algorithms
Stochastic modified equations and adaptive stochastic gradient algorithms
Qianxiao Li
Cheng Tai
E. Weinan
59
285
0
19 Nov 2015
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale
  Bayesian Sampling
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling
Xiaocheng Shang
Zhanxing Zhu
Benedict Leimkuhler
Amos J. Storkey
53
52
0
29 Oct 2015
A Complete Recipe for Stochastic Gradient MCMC
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDLSyDa
68
489
0
15 Jun 2015
Automatic Variational Inference in Stan
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
71
234
0
10 Jun 2015
Towards stability and optimality in stochastic gradient descent
Towards stability and optimality in stochastic gradient descent
Panos Toulis
Dustin Tran
E. Airoldi
74
56
0
10 May 2015
From Averaging to Acceleration, There is Only a Step-size
From Averaging to Acceleration, There is Only a Step-size
Nicolas Flammarion
Francis R. Bach
97
139
0
07 Apr 2015
Early Stopping is Nonparametric Variational Inference
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
89
95
0
06 Apr 2015
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
137
1,828
0
01 Jul 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
114
913
0
17 Feb 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
150
1,167
0
31 Dec 2013
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Non-strongly-convex smooth stochastic approximation with convergence
  rate O(1/n)
Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)
Francis R. Bach
Eric Moulines
96
405
0
10 Jun 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
262
2,627
0
29 Jun 2012
Fixed-Form Variational Posterior Approximation through Stochastic Linear
  Regression
Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression
Tim Salimans
David A. Knowles
122
251
0
28 Jun 2012
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
S. Ahn
Anoop Korattikara Balan
Max Welling
77
306
0
27 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
174
4,309
0
18 Nov 2011
1