ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.03488
  4. Cited By
Learning Proximal Operators: Using Denoising Networks for Regularizing
  Inverse Imaging Problems

Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems

11 April 2017
Tim Meinhardt
Michael Möller
C. Hazirbas
Daniel Cremers
ArXivPDFHTML

Papers citing "Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems"

50 / 67 papers shown
Title
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
Ségolène Martin
Anne Gagneux
Paul Hagemann
Gabriele Steidl
51
9
0
03 Oct 2024
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play
  Priors
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors
Zihui Wu
Yu Sun
Yifan Chen
Bingliang Zhang
Yisong Yue
Katherine Bouman
DiffM
39
22
0
29 May 2024
From Learning to Optimize to Learning Optimization Algorithms
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
65
1
0
28 May 2024
Deep Regularized Compound Gaussian Network for Solving Linear Inverse
  Problems
Deep Regularized Compound Gaussian Network for Solving Linear Inverse Problems
Carter Lyons
R. Raj
Margaret Cheney
BDL
29
3
0
28 Nov 2023
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
36
11
0
22 Oct 2023
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Weijie Gan
Shirin Shoushtari
Yuyang Hu
Jiaming Liu
Hongyu An
Ulugbek S. Kamilov
36
11
0
22 May 2023
Improving Lipschitz-Constrained Neural Networks by Learning Activation
  Functions
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
37
12
0
28 Oct 2022
Provably Convergent Plug & Play Linearized ADMM, applied to Deblurring
  Spatially Varying Kernels
Provably Convergent Plug & Play Linearized ADMM, applied to Deblurring Spatially Varying Kernels
Charles Laroche
Andrés Almansa
Eva Coupeté
Matias Tassano
32
2
0
19 Oct 2022
On Adversarial Robustness of Deep Image Deblurring
On Adversarial Robustness of Deep Image Deblurring
Kanchana Vaishnavi Gandikota
Paramanand Chandramouli
Michael Moeller
44
11
0
05 Oct 2022
Video Restoration with a Deep Plug-and-Play Prior
Video Restoration with a Deep Plug-and-Play Prior
Antoine Monod
J. Delon
Matias Tassano
Andrés Almansa
35
1
0
06 Sep 2022
Estimating a potential without the agony of the partition function
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
33
2
0
19 Aug 2022
Deep Model-Based Architectures for Inverse Problems under Mismatched
  Priors
Deep Model-Based Architectures for Inverse Problems under Mismatched Priors
Shirin Shoushtari
Jiaming Liu
Yuyang Hu
Ulugbek S. Kamilov
28
6
0
26 Jul 2022
A hybrid approach to seismic deblending: when physics meets
  self-supervision
A hybrid approach to seismic deblending: when physics meets self-supervision
N. Luiken
M. Ravasi
C. Birnie
24
6
0
30 May 2022
Deep Generalized Unfolding Networks for Image Restoration
Deep Generalized Unfolding Networks for Image Restoration
Chong Mou
Qian Wang
Jian Zhang
51
183
0
28 Apr 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
47
16
0
13 Apr 2022
Alternative design of DeepPDNet in the context of image restoration
Alternative design of DeepPDNet in the context of image restoration
Mingyuan Jiu
N. Pustelnik
27
2
0
20 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
78
43
0
01 Feb 2022
Learning Proximal Operators to Discover Multiple Optima
Learning Proximal Operators to Discover Multiple Optima
Lingxiao Li
Noam Aigerman
Vladimir G. Kim
Jiajin Li
Kristjan Greenewald
Mikhail Yurochkin
Justin Solomon
47
1
0
28 Jan 2022
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for
  Superresolution
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution
Fabian Altekrüger
J. Hertrich
32
15
0
20 Jan 2022
On Maximum-a-Posteriori estimation with Plug & Play priors and
  stochastic gradient descent
On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
25
25
0
16 Jan 2022
Gradient Step Denoiser for convergent Plug-and-Play
Gradient Step Denoiser for convergent Plug-and-Play
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
38
93
0
07 Oct 2021
Preconditioned Plug-and-Play ADMM with Locally Adjustable Denoiser for
  Image Restoration
Preconditioned Plug-and-Play ADMM with Locally Adjustable Denoiser for Image Restoration
Mikael Le Pendu
C. Guillemot
25
17
0
01 Oct 2021
Wasserstein Patch Prior for Image Superresolution
Wasserstein Patch Prior for Image Superresolution
J. Hertrich
Antoine Houdard
C. Redenbach
SupR
MDE
34
22
0
27 Sep 2021
High-dimensional Assisted Generative Model for Color Image Restoration
High-dimensional Assisted Generative Model for Color Image Restoration
Kai Hong
Chunhua Wu
Cailian Yang
Minghui Zhang
Yancheng Lu
Yuhao Wang
Qiegen Liu
DiffM
33
1
0
14 Aug 2021
Regularising Inverse Problems with Generative Machine Learning Models
Regularising Inverse Problems with Generative Machine Learning Models
Margaret Duff
Neill D. F. Campbell
Matthias Joachim Ehrhardt
GAN
MedIm
29
34
0
22 Jul 2021
Robust partial Fourier reconstruction for diffusion-weighted imaging
  using a recurrent convolutional neural network
Robust partial Fourier reconstruction for diffusion-weighted imaging using a recurrent convolutional neural network
Fasil Gadjimuradov
Thomas Benkert
M. Nickel
Andreas Maier
OOD
25
11
0
19 May 2021
Fixed-Point and Objective Convergence of Plug-and-Play Algorithms
Fixed-Point and Objective Convergence of Plug-and-Play Algorithms
Pravin Nair
Ruturaj G. Gavaskar
K. Chaudhury
48
37
0
21 Apr 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
61
225
0
23 Mar 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
26
109
0
08 Mar 2021
Mobile Computational Photography: A Tour
Mobile Computational Photography: A Tour
M. Delbracio
D. Kelly
Michael S. Brown
P. Milanfar
HAI
102
73
0
17 Feb 2021
Deep Equilibrium Architectures for Inverse Problems in Imaging
Deep Equilibrium Architectures for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
49
181
0
16 Feb 2021
Model-Based Deep Learning
Model-Based Deep Learning
Nir Shlezinger
Jay Whang
Yonina C. Eldar
A. Dimakis
33
318
0
15 Dec 2020
Denoising Score-Matching for Uncertainty Quantification in Inverse
  Problems
Denoising Score-Matching for Uncertainty Quantification in Inverse Problems
Zaccharie Ramzi
B. Remy
F. Lanusse
Jean-Luc Starck
P. Ciuciu
UQCV
MedIm
36
14
0
16 Nov 2020
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
J. Hertrich
Sebastian Neumayer
Gabriele Steidl
22
57
0
04 Nov 2020
Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic
  Method using Deep Denoising Priors
Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors
Yu Sun
Jiaming Liu
Yiran Sun
B. Wohlberg
Ulugbek S. Kamilov
37
15
0
03 Oct 2020
TorchRadon: Fast Differentiable Routines for Computed Tomography
TorchRadon: Fast Differentiable Routines for Computed Tomography
Matteo Ronchetti
OOD
MedIm
23
63
0
29 Sep 2020
Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser
Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser
Zahra Kadkhodaie
Eero P. Simoncelli
32
82
0
27 Jul 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
61
23
0
22 Jul 2020
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
Gilles Puy
Alexandre Boulch
Renaud Marlet
3DPC
OT
137
183
0
22 Jul 2020
End-to-end Interpretable Learning of Non-blind Image Deblurring
End-to-end Interpretable Learning of Non-blind Image Deblurring
Thomas Eboli
Jian Sun
Jean Ponce
19
41
0
03 Jul 2020
Total Deep Variation: A Stable Regularizer for Inverse Problems
Total Deep Variation: A Stable Regularizer for Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
Thomas Pock
MedIm
27
19
0
15 Jun 2020
Scalable Plug-and-Play ADMM with Convergence Guarantees
Scalable Plug-and-Play ADMM with Convergence Guarantees
Yu Sun
Zihui Wu
Xiaojian Xu
B. Wohlberg
Ulugbek S. Kamilov
BDL
35
74
0
05 Jun 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
13
521
0
12 May 2020
When deep denoising meets iterative phase retrieval
When deep denoising meets iterative phase retrieval
Yaotian Wang
Xiaohang Sun
Jason W. Fleischer
20
18
0
03 Mar 2020
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging
  Problems
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
Kaixuan Wei
Angelica Aviles-Rivero
Jingwei Liang
Ying Fu
Carola-Bibiane Schönlieb
Hua Huang
21
103
0
22 Feb 2020
Total Deep Variation for Linear Inverse Problems
Total Deep Variation for Linear Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
Thomas Pock
24
89
0
14 Jan 2020
Deep Learning on Image Denoising: An overview
Deep Learning on Image Denoising: An overview
Chunwei Tian
Lunke Fei
Wenxian Zheng
Yong-mei Xu
W. Zuo
Chia-Wen Lin
35
815
0
31 Dec 2019
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
46
1,002
0
22 Dec 2019
On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM
On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM
Ruturaj G. Gavaskar
K. Chaudhury
9
13
0
31 Oct 2019
Probabilistic Residual Learning for Aleatoric Uncertainty in Image Restoration
Chen Zhang
Bangti Jin
UQCV
24
12
0
01 Aug 2019
12
Next