Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.03488
Cited By
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems
11 April 2017
Tim Meinhardt
Michael Möller
C. Hazirbas
Daniel Cremers
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems"
50 / 67 papers shown
Title
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
Ségolène Martin
Anne Gagneux
Paul Hagemann
Gabriele Steidl
51
9
0
03 Oct 2024
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors
Zihui Wu
Yu Sun
Yifan Chen
Bingliang Zhang
Yisong Yue
Katherine Bouman
DiffM
39
22
0
29 May 2024
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
65
1
0
28 May 2024
Deep Regularized Compound Gaussian Network for Solving Linear Inverse Problems
Carter Lyons
R. Raj
Margaret Cheney
BDL
29
3
0
28 Nov 2023
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
36
11
0
22 Oct 2023
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Weijie Gan
Shirin Shoushtari
Yuyang Hu
Jiaming Liu
Hongyu An
Ulugbek S. Kamilov
36
11
0
22 May 2023
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
37
12
0
28 Oct 2022
Provably Convergent Plug & Play Linearized ADMM, applied to Deblurring Spatially Varying Kernels
Charles Laroche
Andrés Almansa
Eva Coupeté
Matias Tassano
32
2
0
19 Oct 2022
On Adversarial Robustness of Deep Image Deblurring
Kanchana Vaishnavi Gandikota
Paramanand Chandramouli
Michael Moeller
44
11
0
05 Oct 2022
Video Restoration with a Deep Plug-and-Play Prior
Antoine Monod
J. Delon
Matias Tassano
Andrés Almansa
35
1
0
06 Sep 2022
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
33
2
0
19 Aug 2022
Deep Model-Based Architectures for Inverse Problems under Mismatched Priors
Shirin Shoushtari
Jiaming Liu
Yuyang Hu
Ulugbek S. Kamilov
28
6
0
26 Jul 2022
A hybrid approach to seismic deblending: when physics meets self-supervision
N. Luiken
M. Ravasi
C. Birnie
24
6
0
30 May 2022
Deep Generalized Unfolding Networks for Image Restoration
Chong Mou
Qian Wang
Jian Zhang
51
183
0
28 Apr 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
47
16
0
13 Apr 2022
Alternative design of DeepPDNet in the context of image restoration
Mingyuan Jiu
N. Pustelnik
27
2
0
20 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
78
43
0
01 Feb 2022
Learning Proximal Operators to Discover Multiple Optima
Lingxiao Li
Noam Aigerman
Vladimir G. Kim
Jiajin Li
Kristjan Greenewald
Mikhail Yurochkin
Justin Solomon
47
1
0
28 Jan 2022
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution
Fabian Altekrüger
J. Hertrich
32
15
0
20 Jan 2022
On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
25
25
0
16 Jan 2022
Gradient Step Denoiser for convergent Plug-and-Play
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
38
93
0
07 Oct 2021
Preconditioned Plug-and-Play ADMM with Locally Adjustable Denoiser for Image Restoration
Mikael Le Pendu
C. Guillemot
25
17
0
01 Oct 2021
Wasserstein Patch Prior for Image Superresolution
J. Hertrich
Antoine Houdard
C. Redenbach
SupR
MDE
34
22
0
27 Sep 2021
High-dimensional Assisted Generative Model for Color Image Restoration
Kai Hong
Chunhua Wu
Cailian Yang
Minghui Zhang
Yancheng Lu
Yuhao Wang
Qiegen Liu
DiffM
33
1
0
14 Aug 2021
Regularising Inverse Problems with Generative Machine Learning Models
Margaret Duff
Neill D. F. Campbell
Matthias Joachim Ehrhardt
GAN
MedIm
29
34
0
22 Jul 2021
Robust partial Fourier reconstruction for diffusion-weighted imaging using a recurrent convolutional neural network
Fasil Gadjimuradov
Thomas Benkert
M. Nickel
Andreas Maier
OOD
25
11
0
19 May 2021
Fixed-Point and Objective Convergence of Plug-and-Play Algorithms
Pravin Nair
Ruturaj G. Gavaskar
K. Chaudhury
48
37
0
21 Apr 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
61
225
0
23 Mar 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
26
109
0
08 Mar 2021
Mobile Computational Photography: A Tour
M. Delbracio
D. Kelly
Michael S. Brown
P. Milanfar
HAI
102
73
0
17 Feb 2021
Deep Equilibrium Architectures for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
49
181
0
16 Feb 2021
Model-Based Deep Learning
Nir Shlezinger
Jay Whang
Yonina C. Eldar
A. Dimakis
33
318
0
15 Dec 2020
Denoising Score-Matching for Uncertainty Quantification in Inverse Problems
Zaccharie Ramzi
B. Remy
F. Lanusse
Jean-Luc Starck
P. Ciuciu
UQCV
MedIm
36
14
0
16 Nov 2020
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
J. Hertrich
Sebastian Neumayer
Gabriele Steidl
22
57
0
04 Nov 2020
Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors
Yu Sun
Jiaming Liu
Yiran Sun
B. Wohlberg
Ulugbek S. Kamilov
37
15
0
03 Oct 2020
TorchRadon: Fast Differentiable Routines for Computed Tomography
Matteo Ronchetti
OOD
MedIm
23
63
0
29 Sep 2020
Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser
Zahra Kadkhodaie
Eero P. Simoncelli
32
82
0
27 Jul 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
61
23
0
22 Jul 2020
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
Gilles Puy
Alexandre Boulch
Renaud Marlet
3DPC
OT
137
183
0
22 Jul 2020
End-to-end Interpretable Learning of Non-blind Image Deblurring
Thomas Eboli
Jian Sun
Jean Ponce
19
41
0
03 Jul 2020
Total Deep Variation: A Stable Regularizer for Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
Thomas Pock
MedIm
27
19
0
15 Jun 2020
Scalable Plug-and-Play ADMM with Convergence Guarantees
Yu Sun
Zihui Wu
Xiaojian Xu
B. Wohlberg
Ulugbek S. Kamilov
BDL
35
74
0
05 Jun 2020
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
13
521
0
12 May 2020
When deep denoising meets iterative phase retrieval
Yaotian Wang
Xiaohang Sun
Jason W. Fleischer
20
18
0
03 Mar 2020
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
Kaixuan Wei
Angelica Aviles-Rivero
Jingwei Liang
Ying Fu
Carola-Bibiane Schönlieb
Hua Huang
21
103
0
22 Feb 2020
Total Deep Variation for Linear Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
Thomas Pock
24
89
0
14 Jan 2020
Deep Learning on Image Denoising: An overview
Chunwei Tian
Lunke Fei
Wenxian Zheng
Yong-mei Xu
W. Zuo
Chia-Wen Lin
35
815
0
31 Dec 2019
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
46
1,002
0
22 Dec 2019
On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM
Ruturaj G. Gavaskar
K. Chaudhury
9
13
0
31 Oct 2019
Probabilistic Residual Learning for Aleatoric Uncertainty in Image Restoration
Chen Zhang
Bangti Jin
UQCV
24
12
0
01 Aug 2019
1
2
Next