ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.00520
  4. Cited By
Efficient acquisition rules for model-based approximate Bayesian
  computation

Efficient acquisition rules for model-based approximate Bayesian computation

3 April 2017
Marko Jarvenpaa
Michael U. Gutmann
Arijus Pleska
Aki Vehtari
Pekka Marttinen
    TPM
ArXivPDFHTML

Papers citing "Efficient acquisition rules for model-based approximate Bayesian computation"

15 / 15 papers shown
Title
Multifidelity Simulation-based Inference for Computationally Expensive Simulators
Multifidelity Simulation-based Inference for Computationally Expensive Simulators
Anastasia N. Krouglova
Hayden R. Johnson
Basile Confavreux
Michael Deistler
P. J. Gonçalves
81
1
0
17 Feb 2025
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
77
9
0
17 Feb 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
116
2
0
17 Jan 2025
Bridging the reality gap in quantum devices with physics-aware machine
  learning
Bridging the reality gap in quantum devices with physics-aware machine learning
D. L. Craig
H. Moon
F. Fedele
D. Lennon
B. V. Straaten
...
D. Zumbuhl
G. Briggs
Michael A. Osborne
D. Sejdinovic
N. Ares
28
13
0
22 Nov 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
185
0
12 Jan 2021
Neural Approximate Sufficient Statistics for Implicit Models
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
30
79
0
20 Oct 2020
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
26
10
0
18 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
22
40
0
15 Jun 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
45
117
0
10 Feb 2020
Sequential Neural Methods for Likelihood-free Inference
Sequential Neural Methods for Likelihood-free Inference
Conor Durkan
George Papamakarios
Iain Murray
BDL
36
24
0
21 Nov 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
60
358
0
18 May 2018
Flexible statistical inference for mechanistic models of neural dynamics
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
34
240
0
06 Nov 2017
Max-value Entropy Search for Efficient Bayesian Optimization
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
403
0
06 Mar 2017
Likelihood-free inference by ratio estimation
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
42
145
0
30 Nov 2016
Gaussian process modeling in approximate Bayesian computation to
  estimate horizontal gene transfer in bacteria
Gaussian process modeling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria
Marko Jarvenpaa
Michael U. Gutmann
Aki Vehtari
Pekka Marttinen
37
41
0
20 Oct 2016
1