Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.06131
Cited By
Inference via low-dimensional couplings
17 March 2017
Alessio Spantini
Daniele Bigoni
Youssef Marzouk
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inference via low-dimensional couplings"
50 / 62 papers shown
Title
A friendly introduction to triangular transport
M. Ramgraber
Daniel Sharp
M. Le Provost
Youssef Marzouk
63
0
0
27 Mar 2025
Learning local neighborhoods of non-Gaussian graphical models: A measure transport approach
Sarah Liaw
Rebecca E. Morrison
Youssef Marzouk
Ricardo Baptista
53
1
0
18 Mar 2025
Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
Minghao Fu
Zhen Zhang
Zijian Li
Yujia Zheng
Ignavier Ng
Yingyao Hu
Anton van den Hengel
CML
50
0
0
21 Jan 2025
Causal Order Discovery based on Monotonic SCMs
Ali Izadi
Martin Ester
31
0
0
24 Oct 2024
Weak neural variational inference for solving Bayesian inverse problems without forward models: applications in elastography
Vincent C. Scholz
Yaohua Zang
P. Koutsourelakis
41
3
0
30 Jul 2024
Score matching through the roof: linear, nonlinear, and latent variables causal discovery
Francesco Montagna
P. M. Faller
Patrick Bloebaum
Elke Kirschbaum
Francesco Locatello
CML
87
0
0
26 Jul 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
54
5
0
08 Apr 2024
Sequential transport maps using SoS density estimation and
α
α
α
-divergences
Benjamin Zanger
Tiangang Cui
Martin Schreiber
O. Zahm
44
1
0
27 Feb 2024
Nonstationary Time Series Forecasting via Unknown Distribution Adaptation
Zijian Li
Ruichu Cai
Zhenhui Yang
Haiqin Huang
Guan-Hong Chen
Yifan Shen
Zhengming Chen
Xiangchen Song
Kun Zhang
OOD
AI4TS
29
2
0
20 Feb 2024
Sampling in Unit Time with Kernel Fisher-Rao Flow
A. Maurais
Youssef Marzouk
26
12
0
08 Jan 2024
Distributed Nonlinear Filtering using Triangular Transport Maps
Daniel Grange
Ricardo Baptista
Amirhossein Taghvaei
Allen R. Tannenbaum
Sean Phillips
27
1
0
29 Oct 2023
Temporally Disentangled Representation Learning under Unknown Nonstationarity
Xiangchen Song
Weiran Yao
Yewen Fan
Xinshuai Dong
Guan-Hong Chen
Juan Carlos Niebles
Eric P. Xing
Anton van den Hengel
CML
OOD
38
12
0
28 Oct 2023
An adaptive ensemble filter for heavy-tailed distributions: tuning-free inflation and localization
M. Le Provost
Ricardo Baptista
J. Eldredge
Youssef Marzouk
17
1
0
12 Oct 2023
Density Estimation via Measure Transport: Outlook for Applications in the Biological Sciences
Vanessa López-Marrero
Patrick R. Johnstone
Gilchan Park
Xihaier Luo
OT
31
1
0
27 Sep 2023
A transport approach to sequential simulation-based inference
Paul-Baptiste Rubio
Youssef Marzouk
M. Parno
35
1
0
26 Aug 2023
Learning Causal Graphs via Monotone Triangular Transport Maps
S. Akbari
Luca Ganassali
Negar Kiyavash
OT
CML
16
8
0
26 May 2023
Generalized Precision Matrix for Scalable Estimation of Nonparametric Markov Networks
Yujia Zheng
Ignavier Ng
Yewen Fan
Anton van den Hengel
11
4
0
19 May 2023
Scalable Causal Discovery with Score Matching
Francesco Montagna
Nicoletta Noceti
Lorenzo Rosasco
Anton van den Hengel
Francesco Locatello
CML
52
25
0
06 Apr 2023
Self-reinforced polynomial approximation methods for concentrated probability densities
Tiangang Cui
S. Dolgov
O. Zahm
24
5
0
05 Mar 2023
Progressive Bayesian Particle Flows based on Optimal Transport Map Sequences
U. Hanebeck
OT
16
1
0
04 Mar 2023
Dimension-reduced KRnet maps for high-dimensional Bayesian inverse problems
Yani Feng
Keju Tang
Xiaoliang Wan
Qifeng Liao
19
2
0
01 Mar 2023
An Approximation Theory Framework for Measure-Transport Sampling Algorithms
Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef M. Marzouk
A. Sagiv
OT
33
17
0
27 Feb 2023
Transport map unadjusted Langevin algorithms: learning and discretizing perturbed samplers
Benjamin J. Zhang
Youssef M. Marzouk
K. Spiliopoulos
22
0
0
14 Feb 2023
Reduced-Order Autodifferentiable Ensemble Kalman Filters
Yuming Chen
D. Sanz-Alonso
Rebecca Willett
39
8
0
27 Jan 2023
Tensor-train methods for sequential state and parameter learning in state-space models
Yiran Zhao
Tiangang Cui
24
2
0
24 Jan 2023
Ensemble transport smoothing. Part II: Nonlinear updates
M. Ramgraber
Ricardo Baptista
D. McLaughlin
Youssef Marzouk
23
6
0
31 Oct 2022
Ensemble transport smoothing. Part I: Unified framework
M. Ramgraber
Ricardo Baptista
D. McLaughlin
Youssef Marzouk
14
5
0
31 Oct 2022
Temporally Disentangled Representation Learning
Weiran Yao
Guangyi Chen
Anton van den Hengel
CML
BDL
OOD
32
48
0
24 Oct 2022
Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation
Tiangang Cui
S. Dolgov
Robert Scheichl
41
3
0
05 Sep 2022
On minimax density estimation via measure transport
Sven Wang
Youssef Marzouk
OT
28
19
0
20 Jul 2022
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
29
11
0
22 Jun 2022
Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization
Vahid Keshavarzzadeh
Robert M. Kirby
A. Narayan
BDL
19
2
0
07 May 2022
Learning Latent Causal Dynamics
Weiran Yao
Guan-Hong Chen
Anton van den Hengel
OOD
CML
OffRL
19
13
0
10 Feb 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
38
5
0
20 Jan 2022
Triangular Flows for Generative Modeling: Statistical Consistency, Smoothness Classes, and Fast Rates
N. J. Irons
M. Scetbon
Soumik Pal
Zaïd Harchaoui
33
17
0
31 Dec 2021
Scalable Bayesian transport maps for high-dimensional non-Gaussian spatial fields
Matthias Katzfuss
Florian Schafer
OT
32
14
0
09 Aug 2021
Sparse approximation of triangular transports. Part II: the infinite dimensional case
Jakob Zech
Youssef Marzouk
20
19
0
28 Jul 2021
Augmented KRnet for density estimation and approximation
Xiaoliang Wan
Keju Tang
12
5
0
26 May 2021
Multiscale Invertible Generative Networks for High-Dimensional Bayesian Inference
Shumao Zhang
Pengchuan Zhang
T. Hou
BDL
9
4
0
12 May 2021
NF-iSAM: Incremental Smoothing and Mapping via Normalizing Flows
Qiangqiang Huang
Can Pu
D. Fourie
Kasra Khosoussi
Jonathan P. How
J. Leonard
23
12
0
11 May 2021
Learning non-Gaussian graphical models via Hessian scores and triangular transport
Ricardo Baptista
Youssef Marzouk
Rebecca E. Morrison
O. Zahm
31
23
0
08 Jan 2021
A unified performance analysis of likelihood-informed subspace methods
Tiangang Cui
X. Tong
21
26
0
07 Jan 2021
On the representation and learning of monotone triangular transport maps
Ricardo Baptista
Youssef Marzouk
O. Zahm
11
46
0
22 Sep 2020
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
26
33
0
14 Jul 2020
VAE-KRnet and its applications to variational Bayes
Xiaoliang Wan
Shuangqing Wei
BDL
DRL
11
13
0
29 Jun 2020
Scalable Approximate Inference and Some Applications
Jun Han
BDL
22
1
0
07 Mar 2020
Sequential Ensemble Transform for Bayesian Inverse Problems
Aaron Myers
Alexandre Hoang Thiery
Kainan Wang
T. Bui-Thanh
23
5
0
20 Sep 2019
MALA-within-Gibbs samplers for high-dimensional distributions with sparse conditional structure
X. Tong
M. Morzfeld
Y. M. Marzouk
14
28
0
26 Aug 2019
Coupling techniques for nonlinear ensemble filtering
Alessio Spantini
Ricardo Baptista
Youssef Marzouk
27
75
0
30 Jun 2019
Greedy inference with structure-exploiting lazy maps
Michael C. Brennan
Daniele Bigoni
O. Zahm
Alessio Spantini
Youssef Marzouk
20
13
0
31 May 2019
1
2
Next