ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.05160
  4. Cited By
A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators
  for Partition Function Computation in Log-Linear Models

A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators for Partition Function Computation in Log-Linear Models

15 March 2017
Ryan Spring
Anshumali Shrivastava
ArXivPDFHTML

Papers citing "A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators for Partition Function Computation in Log-Linear Models"

4 / 4 papers shown
Title
Memory Mosaics
Memory Mosaics
Jianyu Zhang
Niklas Nolte
Ranajoy Sadhukhan
Beidi Chen
Léon Bottou
VLM
73
3
0
10 May 2024
Cooperative Retriever and Ranker in Deep Recommenders
Cooperative Retriever and Ranker in Deep Recommenders
Xunpeng Huang
Defu Lian
Jin Chen
Liu Zheng
Xing Xie
Enhong Chen
VLM
AI4TS
30
11
0
28 Jun 2022
Climbing the WOL: Training for Cheaper Inference
Climbing the WOL: Training for Cheaper Inference
Zichang Liu
Zhaozhuo Xu
A. Ji
Jonathan Li
Beidi Chen
Anshumali Shrivastava
TPM
24
7
0
02 Jul 2020
Scalable and Sustainable Deep Learning via Randomized Hashing
Scalable and Sustainable Deep Learning via Randomized Hashing
Ryan Spring
Anshumali Shrivastava
29
132
0
26 Feb 2016
1