Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.04730
Cited By
Understanding Black-box Predictions via Influence Functions
14 March 2017
Pang Wei Koh
Percy Liang
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Black-box Predictions via Influence Functions"
50 / 620 papers shown
Title
Input Similarity from the Neural Network Perspective
Guillaume Charpiat
N. Girard
Loris Felardos
Y. Tarabalka
32
68
0
10 Feb 2021
Mitigating belief projection in explainable artificial intelligence via Bayesian Teaching
Scott Cheng-Hsin Yang
Wai Keen Vong
Ravi B. Sojitra
Tomas Folke
Patrick Shafto
24
42
0
07 Feb 2021
Influence Estimation for Generative Adversarial Networks
Naoyuki Terashita
Hiroki Ohashi
Yuichi Nonaka
T. Kanemaru
TDI
38
12
0
20 Jan 2021
Dissonance Between Human and Machine Understanding
Zijian Zhang
Jaspreet Singh
U. Gadiraju
Avishek Anand
59
74
0
18 Jan 2021
Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan
Alessandro Achille
Giovanni Paolini
Orchid Majumder
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
27
25
0
17 Jan 2021
Bayesian Inference Forgetting
Shaopeng Fu
Fengxiang He
Yue Xu
Dacheng Tao
MU
28
12
0
16 Jan 2021
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
156
190
0
13 Jan 2021
Explain and Predict, and then Predict Again
Zijian Zhang
Koustav Rudra
Avishek Anand
FAtt
33
51
0
11 Jan 2021
FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
Han Guo
Nazneen Rajani
Peter Hase
Joey Tianyi Zhou
Caiming Xiong
TDI
46
102
0
31 Dec 2020
Coded Machine Unlearning
Nasser Aldaghri
Hessam Mahdavifar
Ahmad Beirami
MIACV
27
38
0
31 Dec 2020
Mixed-Privacy Forgetting in Deep Networks
Aditya Golatkar
Alessandro Achille
Avinash Ravichandran
M. Polito
Stefano Soatto
CLL
MU
130
161
0
24 Dec 2020
LQF: Linear Quadratic Fine-Tuning
Alessandro Achille
Aditya Golatkar
Avinash Ravichandran
M. Polito
Stefano Soatto
31
27
0
21 Dec 2020
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
Micah Goldblum
Dimitris Tsipras
Chulin Xie
Xinyun Chen
Avi Schwarzschild
D. Song
Aleksander Madry
Bo Li
Tom Goldstein
SILM
34
271
0
18 Dec 2020
Exacerbating Algorithmic Bias through Fairness Attacks
Ninareh Mehrabi
Muhammad Naveed
Fred Morstatter
Aram Galstyan
AAML
33
67
0
16 Dec 2020
Are We Ready For Learned Cardinality Estimation?
Xiaoying Wang
Changbo Qu
Weiyuan Wu
Jiannan Wang
Qingqing Zhou
39
113
0
12 Dec 2020
Data Appraisal Without Data Sharing
Mimee Xu
Laurens van der Maaten
Awni Y. Hannun
TDI
39
6
0
11 Dec 2020
Efficient Estimation of Influence of a Training Instance
Sosuke Kobayashi
Sho Yokoi
Jun Suzuki
Kentaro Inui
TDI
37
15
0
08 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
357
0
07 Dec 2020
Self-Explaining Structures Improve NLP Models
Zijun Sun
Chun Fan
Qinghong Han
Xiaofei Sun
Yuxian Meng
Fei Wu
Jiwei Li
MILM
XAI
LRM
FAtt
46
38
0
03 Dec 2020
Cross-Loss Influence Functions to Explain Deep Network Representations
Andrew Silva
Rohit Chopra
Matthew C. Gombolay
TDI
26
15
0
03 Dec 2020
How Robust are Randomized Smoothing based Defenses to Data Poisoning?
Akshay Mehra
B. Kailkhura
Pin-Yu Chen
Jihun Hamm
OOD
AAML
28
32
0
02 Dec 2020
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
Objective Diagnosis for Histopathological Images Based on Machine Learning Techniques: Classical Approaches and New Trends
Naira Elazab
Hassan H. Soliman
Shaker El-Sappagh
S. Islam
Mohammed M Elmogy
17
20
0
10 Nov 2020
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
241
0
30 Oct 2020
Concealed Data Poisoning Attacks on NLP Models
Eric Wallace
Tony Zhao
Shi Feng
Sameer Singh
SILM
29
18
0
23 Oct 2020
Axiom Learning and Belief Tracing for Transparent Decision Making in Robotics
Tiago Mota
Mohan Sridharan
21
5
0
20 Oct 2020
Mitigating Sybil Attacks on Differential Privacy based Federated Learning
Yupeng Jiang
Yong Li
Yipeng Zhou
Xi Zheng
FedML
AAML
29
15
0
20 Oct 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
28
396
0
19 Oct 2020
Poison Attacks against Text Datasets with Conditional Adversarially Regularized Autoencoder
Alvin Chan
Yi Tay
Yew-Soon Ong
Aston Zhang
SILM
23
56
0
06 Oct 2020
Explaining Deep Neural Networks
Oana-Maria Camburu
XAI
FAtt
38
26
0
04 Oct 2020
RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models
Samuel Gehman
Suchin Gururangan
Maarten Sap
Yejin Choi
Noah A. Smith
83
1,134
0
24 Sep 2020
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Swabha Swayamdipta
Roy Schwartz
Nicholas Lourie
Yizhong Wang
Hannaneh Hajishirzi
Noah A. Smith
Yejin Choi
54
429
0
22 Sep 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
27
11
0
15 Sep 2020
Machine Unlearning for Random Forests
Jonathan Brophy
Daniel Lowd
MU
24
159
0
11 Sep 2020
Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching
Jonas Geiping
Liam H. Fowl
Wenjie Huang
W. Czaja
Gavin Taylor
Michael Moeller
Tom Goldstein
AAML
21
215
0
04 Sep 2020
Interactive Visual Study of Multiple Attributes Learning Model of X-Ray Scattering Images
Xinyi Huang
Suphanut Jamonnak
Ye Zhao
Boyu Wang
Minh Hoai
Kevin Yager
Wei Xu
30
5
0
03 Sep 2020
Stochastic Optimization Forests
Nathan Kallus
Xiaojie Mao
32
48
0
17 Aug 2020
Survey of XAI in digital pathology
Milda Pocevičiūtė
Gabriel Eilertsen
Claes Lundström
14
56
0
14 Aug 2020
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack
Sophie Hilgard
Sameer Singh
Himabindu Lakkaraju
FAtt
29
162
0
11 Aug 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
46
443
0
09 Aug 2020
MetAL: Active Semi-Supervised Learning on Graphs via Meta Learning
Kaushalya Madhawa
T. Murata
AI4CE
35
8
0
22 Jul 2020
Sequential Explanations with Mental Model-Based Policies
A. Yeung
Shalmali Joshi
Joseph Jay Williams
Frank Rudzicz
FAtt
LRM
36
15
0
17 Jul 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
37
419
0
16 Jul 2020
Monitoring and explainability of models in production
Janis Klaise
A. V. Looveren
Clive Cox
G. Vacanti
Alexandru Coca
43
49
0
13 Jul 2020
Quality Inference in Federated Learning with Secure Aggregation
Balázs Pejó
G. Biczók
FedML
23
22
0
13 Jul 2020
Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations
Chaoning Zhang
Philipp Benz
Tooba Imtiaz
In-So Kweon
SSL
AAML
22
118
0
13 Jul 2020
Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks
Yunfei Liu
Xingjun Ma
James Bailey
Feng Lu
AAML
22
505
0
05 Jul 2020
Efficient computation and analysis of distributional Shapley values
Yongchan Kwon
Manuel A. Rivas
James Zou
FAtt
TDI
24
61
0
02 Jul 2020
Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning
Zhongzheng Ren
Raymond A. Yeh
Alex Schwing
46
95
0
02 Jul 2020
Unifying Model Explainability and Robustness via Machine-Checkable Concepts
Vedant Nanda
Till Speicher
John P. Dickerson
Krishna P. Gummadi
Muhammad Bilal Zafar
AAML
14
4
0
01 Jul 2020
Previous
1
2
3
...
10
11
12
13
8
9
Next