Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.01365
Cited By
Axiomatic Attribution for Deep Networks
4 March 2017
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Axiomatic Attribution for Deep Networks"
50 / 2,826 papers shown
Title
Explaining Machine Learning Models using Entropic Variable Projection
François Bachoc
Fabrice Gamboa
Max Halford
Jean-Michel Loubes
Laurent Risser
FAtt
12
5
0
18 Oct 2018
Concise Explanations of Neural Networks using Adversarial Training
P. Chalasani
Jiefeng Chen
Aravind Sadagopan
S. Jha
Xi Wu
AAML
FAtt
21
13
0
15 Oct 2018
What made you do this? Understanding black-box decisions with sufficient input subsets
Brandon Carter
Jonas W. Mueller
Siddhartha Jain
David K Gifford
FAtt
37
77
0
09 Oct 2018
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo
Justin Gilmer
Ian Goodfellow
Been Kim
FAtt
AAML
19
128
0
08 Oct 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
64
1,931
0
08 Oct 2018
On the Art and Science of Machine Learning Explanations
Patrick Hall
FAtt
XAI
28
30
0
05 Oct 2018
Interpreting Layered Neural Networks via Hierarchical Modular Representation
C. Watanabe
21
19
0
03 Oct 2018
Training Machine Learning Models by Regularizing their Explanations
A. Ross
FaML
26
0
0
29 Sep 2018
Stakeholders in Explainable AI
Alun D. Preece
Daniel Harborne
Dave Braines
Richard J. Tomsett
Supriyo Chakraborty
13
154
0
29 Sep 2018
Rethinking Self-driving: Multi-task Knowledge for Better Generalization and Accident Explanation Ability
Zhihao Li
Toshiyuki Motoyoshi
Kazuma Sasaki
T. Ogata
S. Sugano
LRM
16
39
0
28 Sep 2018
Response Characterization for Auditing Cell Dynamics in Long Short-term Memory Networks
Ramin M. Hasani
Alexander Amini
Mathias Lechner
Felix Naser
Radu Grosu
Daniela Rus
28
25
0
11 Sep 2018
Interpreting Neural Networks With Nearest Neighbors
Eric Wallace
Shi Feng
Jordan L. Boyd-Graber
AAML
FAtt
MILM
15
53
0
08 Sep 2018
DeepPINK: reproducible feature selection in deep neural networks
Yang Young Lu
Yingying Fan
Jinchi Lv
William Stafford Noble
FAtt
27
124
0
04 Sep 2018
Dissecting Contextual Word Embeddings: Architecture and Representation
Matthew E. Peters
Mark Neumann
Luke Zettlemoyer
Wen-tau Yih
35
426
0
27 Aug 2018
Deep Learning: Computational Aspects
Nicholas G. Polson
Vadim Sokolov
PINN
BDL
AI4CE
21
14
0
26 Aug 2018
Shedding Light on Black Box Machine Learning Algorithms: Development of an Axiomatic Framework to Assess the Quality of Methods that Explain Individual Predictions
Milo Honegger
17
35
0
15 Aug 2018
iNNvestigate neural networks!
Maximilian Alber
Sebastian Lapuschkin
P. Seegerer
Miriam Hagele
Kristof T. Schütt
G. Montavon
Wojciech Samek
K. Müller
Sven Dähne
Pieter-Jan Kindermans
24
348
0
13 Aug 2018
L-Shapley and C-Shapley: Efficient Model Interpretation for Structured Data
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
FAtt
TDI
14
213
0
08 Aug 2018
Enabling Trust in Deep Learning Models: A Digital Forensics Case Study
Aditya K
Slawomir Grzonkowski
NhienAn Lekhac
13
27
0
03 Aug 2018
Efficient Purely Convolutional Text Encoding
Szymon Malik
A. Lancucki
J. Chorowski
3DV
27
1
0
03 Aug 2018
Symbolic Execution for Deep Neural Networks
D. Gopinath
Kaiyuan Wang
Mengshi Zhang
C. Păsăreanu
S. Khurshid
AAML
11
54
0
27 Jul 2018
Computationally Efficient Measures of Internal Neuron Importance
Avanti Shrikumar
Jocelin Su
A. Kundaje
FAtt
16
29
0
26 Jul 2018
Knockoffs for the mass: new feature importance statistics with false discovery guarantees
Jaime Roquero Gimenez
Amirata Ghorbani
James Zou
CML
24
54
0
17 Jul 2018
Model Reconstruction from Model Explanations
S. Milli
Ludwig Schmidt
Anca Dragan
Moritz Hardt
FAtt
21
177
0
13 Jul 2018
Direct Uncertainty Prediction for Medical Second Opinions
M. Raghu
Katy Blumer
Rory Sayres
Ziad Obermeyer
Robert D. Kleinberg
S. Mullainathan
Jon M. Kleinberg
OOD
UD
27
136
0
04 Jul 2018
A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual & Group Unfairness via Inequality Indices
Till Speicher
Hoda Heidari
Nina Grgic-Hlaca
Krishna P. Gummadi
Adish Singla
Adrian Weller
Muhammad Bilal Zafar
FaML
14
259
0
02 Jul 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
31
670
0
28 Jun 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
59
1,159
0
27 Jun 2018
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
25
40
0
22 Jun 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
30
522
0
21 Jun 2018
RUDDER: Return Decomposition for Delayed Rewards
Jose A. Arjona-Medina
Michael Gillhofer
Michael Widrich
Thomas Unterthiner
Johannes Brandstetter
Sepp Hochreiter
30
212
0
20 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
56
933
0
20 Jun 2018
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
19
82
0
19 Jun 2018
Maximally Invariant Data Perturbation as Explanation
Satoshi Hara
Kouichi Ikeno
Tasuku Soma
Takanori Maehara
AAML
16
8
0
19 Jun 2018
Detecting and interpreting myocardial infarction using fully convolutional neural networks
Nils Strodthoff
C. Strodthoff
43
150
0
18 Jun 2018
Hierarchical interpretations for neural network predictions
Chandan Singh
W. James Murdoch
Bin Yu
31
145
0
14 Jun 2018
A Note about: Local Explanation Methods for Deep Neural Networks lack Sensitivity to Parameter Values
Mukund Sundararajan
Ankur Taly
FAtt
19
21
0
11 Jun 2018
Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty
Hao Zhou
Yunyang Xiong
Vikas Singh
UQCV
BDL
52
4
0
10 Jun 2018
Explainable Neural Networks based on Additive Index Models
J. Vaughan
Agus Sudjianto
Erind Brahimi
Jie Chen
V. Nair
18
106
0
05 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
40
1,842
0
31 May 2018
How Important Is a Neuron?
Kedar Dhamdhere
Mukund Sundararajan
Qiqi Yan
FAtt
GNN
22
128
0
30 May 2018
Semantic Network Interpretation
Pei Guo
Ryan Farrell
MILM
FAtt
17
0
0
23 May 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
42
96
0
16 May 2018
Did the Model Understand the Question?
Pramod Kaushik Mudrakarta
Ankur Taly
Mukund Sundararajan
Kedar Dhamdhere
ELM
OOD
FAtt
27
196
0
14 May 2018
Modeling Psychotherapy Dialogues with Kernelized Hashcode Representations: A Nonparametric Information-Theoretic Approach
S. Garg
Irina Rish
Guillermo Cecchi
Palash Goyal
Sarik Ghazarian
Shuyang Gao
Greg Ver Steeg
Aram Galstyan
29
0
0
26 Apr 2018
Pathologies of Neural Models Make Interpretations Difficult
Shi Feng
Eric Wallace
Alvin Grissom II
Mohit Iyyer
Pedro Rodriguez
Jordan L. Boyd-Graber
AAML
FAtt
13
317
0
20 Apr 2018
Understanding Regularization to Visualize Convolutional Neural Networks
Maximilian Baust
Florian Ludwig
Christian Rupprecht
Matthias Kohl
S. Braunewell
FAtt
14
4
0
20 Apr 2018
Egocentric 6-DoF Tracking of Small Handheld Objects
Rohit Pandey
Pavel Pidlypenskyi
Shuoran Yang
Christine Kaeser-Chen
6
4
0
16 Apr 2018
Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier features
Minh-Nghia Nguyen
Ngo Anh Vien
4
34
0
13 Apr 2018
Generative Visual Rationales
J. Seah
Jennifer S. N. Tang
Andy Kitchen
Jonathan Seah
MedIm
18
1
0
04 Apr 2018
Previous
1
2
3
...
55
56
57
Next