ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.04893
16
69

Why are Saliency Maps Noisy? Cause of and Solution to Noisy Saliency Maps

13 February 2019
Beomsu Kim
Junghoon Seo
Seunghyun Jeon
Jamyoung Koo
J. Choe
Taegyun Jeon
    FAtt
ArXivPDFHTML
Abstract

Saliency Map, the gradient of the score function with respect to the input, is the most basic technique for interpreting deep neural network decisions. However, saliency maps are often visually noisy. Although several hypotheses were proposed to account for this phenomenon, there are few works that provide rigorous analyses of noisy saliency maps. In this paper, we firstly propose a new hypothesis that noise may occur in saliency maps when irrelevant features pass through ReLU activation functions. Then, we propose Rectified Gradient, a method that alleviates this problem through layer-wise thresholding during backpropagation. Experiments with neural networks trained on CIFAR-10 and ImageNet showed effectiveness of our method and its superiority to other attribution methods.

View on arXiv
Comments on this paper