ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00868
  4. Cited By
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning

Using Synthetic Data to Train Neural Networks is Model-Based Reasoning

2 March 2017
T. Le
A. G. Baydin
R. Zinkov
Frank Wood
    SyDaOOD
ArXiv (abs)PDFHTML

Papers citing "Using Synthetic Data to Train Neural Networks is Model-Based Reasoning"

17 / 17 papers shown
Title
Inference Compilation and Universal Probabilistic Programming
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank Wood
UQCV
194
143
0
31 Oct 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
165
158
0
20 May 2016
Synthetic Data for Text Localisation in Natural Images
Synthetic Data for Text Localisation in Natural Images
Ankush Gupta
Andrea Vedaldi
Andrew Zisserman
150
1,430
0
22 Apr 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
165
9
0
22 Feb 2016
Neural Programmer-Interpreters
Neural Programmer-Interpreters
Scott E. Reed
Nando de Freitas
101
409
0
19 Nov 2015
DeepFont: Identify Your Font from An Image
DeepFont: Identify Your Font from An Image
Zhangyang Wang
Jianchao Yang
Hailin Jin
Eli Shechtman
A. Agarwala
Jonathan Brandt
Thomas S. Huang
VLM
53
123
0
12 Jul 2015
A New Approach to Probabilistic Programming Inference
A New Approach to Probabilistic Programming Inference
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
59
347
0
03 Jul 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,260
0
22 Dec 2014
Deep Visual-Semantic Alignments for Generating Image Descriptions
Deep Visual-Semantic Alignments for Generating Image Descriptions
A. Karpathy
Li Fei-Fei
140
5,590
0
07 Dec 2014
Reading Text in the Wild with Convolutional Neural Networks
Reading Text in the Wild with Convolutional Neural Networks
Max Jaderberg
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
112
1,166
0
04 Dec 2014
Show and Tell: A Neural Image Caption Generator
Show and Tell: A Neural Image Caption Generator
Oriol Vinyals
Alexander Toshev
Samy Bengio
D. Erhan
3DV
249
6,035
0
17 Nov 2014
Synthetic Data and Artificial Neural Networks for Natural Scene Text
  Recognition
Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition
Max Jaderberg
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
157
935
0
09 Jun 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
277
14,961
1
21 Dec 2013
Multi-digit Number Recognition from Street View Imagery using Deep
  Convolutional Neural Networks
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
Ian Goodfellow
Yaroslav Bulatov
Julian Ibarz
Sacha Arnoud
Vinay D. Shet
113
720
0
20 Dec 2013
Approximate Bayesian Image Interpretation using Generative Probabilistic
  Graphics Programs
Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs
Vikash K. Mansinghka
Tejas D. Kulkarni
Yura N. Perov
J. Tenenbaum
183
108
0
29 Jun 2013
Philosophy and the practice of Bayesian statistics
Philosophy and the practice of Bayesian statistics
Andrew Gelman
C. Shalizi
94
639
0
19 Jun 2010
Approximate Bayesian computation (ABC) gives exact results under the
  assumption of model error
Approximate Bayesian computation (ABC) gives exact results under the assumption of model error
Richard D. Wilkinson
110
275
0
20 Nov 2008
1