ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00564
  4. Cited By
MoleculeNet: A Benchmark for Molecular Machine Learning

MoleculeNet: A Benchmark for Molecular Machine Learning

2 March 2017
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
    OOD
ArXivPDFHTML

Papers citing "MoleculeNet: A Benchmark for Molecular Machine Learning"

50 / 803 papers shown
Title
InstructMol: Multi-Modal Integration for Building a Versatile and
  Reliable Molecular Assistant in Drug Discovery
InstructMol: Multi-Modal Integration for Building a Versatile and Reliable Molecular Assistant in Drug Discovery
He Cao
Zijing Liu
Xingyu Lu
Yuan Yao
Yu Li
30
58
0
27 Nov 2023
Exploring Causal Learning through Graph Neural Networks: An In-depth
  Review
Exploring Causal Learning through Graph Neural Networks: An In-depth Review
Simi Job
Xiaohui Tao
Taotao Cai
Haoran Xie
Lin Li
Jianming Yong
Qing Li
CML
AI4CE
38
5
0
25 Nov 2023
Example-Based Explanations of Random Forest Predictions
Example-Based Explanations of Random Forest Predictions
Henrik Boström
FAtt
15
1
0
24 Nov 2023
nach0: Multimodal Natural and Chemical Languages Foundation Model
nach0: Multimodal Natural and Chemical Languages Foundation Model
M. Livne
Z. Miftahutdinov
E. Tutubalina
Maksim Kuznetsov
Daniil Polykovskiy
...
Aastha Jhunjhunwala
Anthony Costa
Alex Aliper
Alán Aspuru-Guzik
Alex Zhavoronkov
AI4CE
27
12
0
21 Nov 2023
A Survey of Graph Meets Large Language Model: Progress and Future
  Directions
A Survey of Graph Meets Large Language Model: Progress and Future Directions
Yuhan Li
Zhixun Li
Peisong Wang
Jia Li
Xiangguo Sun
Hongtao Cheng
Jeffrey Xu Yu
40
56
0
21 Nov 2023
Multiparameter Persistent Homology for Molecular Property Prediction
Multiparameter Persistent Homology for Molecular Property Prediction
Andac Demir
B. Kiziltan
27
1
0
17 Nov 2023
Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning
Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning
Hao Xu
Yifei Wang
Yunrui Li
Pengyu Hong
Pengyu Hong
33
3
0
11 Nov 2023
Identifying Semantic Component for Robust Molecular Property Prediction
Identifying Semantic Component for Robust Molecular Property Prediction
Zijian Li
Zunhong Xu
Ruichu Cai
Zhenhui Yang
Yuguang Yan
Zhifeng Hao
Guan-Hong Chen
Kun Zhang
23
9
0
08 Nov 2023
Sparse Training of Discrete Diffusion Models for Graph Generation
Sparse Training of Discrete Diffusion Models for Graph Generation
Yiming Qin
Clément Vignac
Pascal Frossard
27
12
0
03 Nov 2023
Attacking Graph Neural Networks with Bit Flips: Weisfeiler and Lehman Go
  Indifferent
Attacking Graph Neural Networks with Bit Flips: Weisfeiler and Lehman Go Indifferent
Lorenz Kummer
Samir Moustafa
Nils N. Kriege
Wilfried N. Gansterer
GNN
AAML
30
0
0
02 Nov 2023
Better with Less: A Data-Active Perspective on Pre-Training Graph Neural
  Networks
Better with Less: A Data-Active Perspective on Pre-Training Graph Neural Networks
Jiarong Xu
Renhong Huang
Xin Jiang
Yuxuan Cao
Carl Yang
Chunping Wang
Yang Yang
AI4CE
36
14
0
02 Nov 2023
A Review and Roadmap of Deep Causal Model from Different Causal
  Structures and Representations
A Review and Roadmap of Deep Causal Model from Different Causal Structures and Representations
Hang Chen
Keqing Du
Chenguang Li
Xinyu Yang
49
2
0
02 Nov 2023
Graph Neural Networks for Road Safety Modeling: Datasets and Evaluations
  for Accident Analysis
Graph Neural Networks for Road Safety Modeling: Datasets and Evaluations for Accident Analysis
Abhinav Nippani
Dongyue Li
Haotian Ju
Haris N. Koutsopoulos
Hongyang R. Zhang
GNN
49
6
0
31 Oct 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising
  Diffusion
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
42
5
0
30 Oct 2023
Datasets and Benchmarks for Nanophotonic Structure and Parametric Design
  Simulations
Datasets and Benchmarks for Nanophotonic Structure and Parametric Design Simulations
Jungtaek Kim
Mingxuan Li
Oliver Hinder
Paul W. Leu
24
1
0
29 Oct 2023
Improving Compositional Generalization Using Iterated Learning and
  Simplicial Embeddings
Improving Compositional Generalization Using Iterated Learning and Simplicial Embeddings
Yi Ren
Samuel Lavoie
Mikhail Galkin
Danica J. Sutherland
Aaron Courville
41
15
0
28 Oct 2023
Unsupervised Learning of Molecular Embeddings for Enhanced Clustering
  and Emergent Properties for Chemical Compounds
Unsupervised Learning of Molecular Embeddings for Enhanced Clustering and Emergent Properties for Chemical Compounds
Jaiveer Gill
Ratul Chakraborty
Reetham Gubba
Amy Liu
Shrey Jain
Chirag Iyer
Obaid Khwaja
Saurav Kumar
12
0
0
25 Oct 2023
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
Discriminator Guidance for Autoregressive Diffusion Models
Discriminator Guidance for Autoregressive Diffusion Models
Filip Ekstrom Kelvinius
Fredrik Lindsten
DiffM
19
5
0
24 Oct 2023
Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules
Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules
Zhiyuan Liu
Yaorui Shi
An Zhang
Enzhi Zhang
Kenji Kawaguchi
Xiang Wang
Tat-Seng Chua
AI4CE
39
36
0
23 Oct 2023
UniMAP: Universal SMILES-Graph Representation Learning
UniMAP: Universal SMILES-Graph Representation Learning
Shikun Feng
Lixin Yang
Wei-Ying Ma
Yanyan Lan
OffRL
19
6
0
22 Oct 2023
Learning Invariant Molecular Representation in Latent Discrete Space
Learning Invariant Molecular Representation in Latent Discrete Space
Zhuang Xiang
Qiang Zhang
Keyan Ding
Yatao Bian
Xiao Wang
Jingsong Lv
Hongyang Chen
Huajun Chen
OOD
26
16
0
22 Oct 2023
Improving Molecular Properties Prediction Through Latent Space Fusion
Improving Molecular Properties Prediction Through Latent Space Fusion
Eduardo Soares
Akihiro Kishimoto
E. V. Brazil
Seiji Takeda
Hiroshi Kajino
Renato F. G. Cerqueira
BDL
AI4CE
18
2
0
20 Oct 2023
Compositional Deep Probabilistic Models of DNA Encoded Libraries
Compositional Deep Probabilistic Models of DNA Encoded Libraries
Benson Chen
Mohammad M. Sultan
Theofanis Karaletsos
11
3
0
20 Oct 2023
MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and
  Uni-Modal Adapter
MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter
Zhiyuan Liu
Sihang Li
Yancheng Luo
Hao Fei
Yixin Cao
Kenji Kawaguchi
Xiang Wang
Tat-Seng Chua
30
81
0
19 Oct 2023
BioPlanner: Automatic Evaluation of LLMs on Protocol Planning in Biology
BioPlanner: Automatic Evaluation of LLMs on Protocol Planning in Biology
Odhran O'Donoghue
Aleksandar Shtedritski
John Ginger
Ralph Abboud
Ali E. Ghareeb
Justin Booth
Samuel G. Rodriques
22
17
0
16 Oct 2023
SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection
SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection
Zhihao Ding
Jieming Shi
Shiqi Shen
Xuequn Shang
Jiannong Cao
Zhipeng Wang
Zhi Gong
OODD
OOD
37
4
0
16 Oct 2023
In-Context Learning for Few-Shot Molecular Property Prediction
In-Context Learning for Few-Shot Molecular Property Prediction
Christopher Fifty
J. Leskovec
Sebastian Thrun
36
5
0
13 Oct 2023
Large Language Models for Scientific Synthesis, Inference and
  Explanation
Large Language Models for Scientific Synthesis, Inference and Explanation
Yizhen Zheng
Huan Yee Koh
Jiaxin Ju
A. T. Nguyen
Lauren T. May
Geoffrey I. Webb
Shirui Pan
ELM
54
32
0
12 Oct 2023
BioT5: Enriching Cross-modal Integration in Biology with Chemical
  Knowledge and Natural Language Associations
BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge and Natural Language Associations
Qizhi Pei
Wei Zhang
Jinhua Zhu
Kehan Wu
Kaiyuan Gao
Lijun Wu
Yingce Xia
Rui Yan
36
61
0
11 Oct 2023
ADMEOOD: Out-of-Distribution Benchmark for Drug Property Prediction
ADMEOOD: Out-of-Distribution Benchmark for Drug Property Prediction
Shuoying Wei
Xinlong Wen
Lida Zhu
Songquan Li
Rongbo Zhu
OOD
22
1
0
11 Oct 2023
Lo-Hi: Practical ML Drug Discovery Benchmark
Lo-Hi: Practical ML Drug Discovery Benchmark
Simon Steshin
VLM
15
7
0
10 Oct 2023
Transformers and Large Language Models for Chemistry and Drug Discovery
Transformers and Large Language Models for Chemistry and Drug Discovery
Andres M Bran
Philippe Schwaller
LM&MA
MedIm
AI4CE
38
14
0
09 Oct 2023
Beyond Text: A Deep Dive into Large Language Models' Ability on
  Understanding Graph Data
Beyond Text: A Deep Dive into Large Language Models' Ability on Understanding Graph Data
Yuntong Hu
Zhengwu Zhang
Liang Zhao
GNN
34
23
0
07 Oct 2023
Towards Foundational Models for Molecular Learning on Large-Scale
  Multi-Task Datasets
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Dominique Beaini
Shenyang Huang
Joao Alex Cunha
Zhiyi Li
Gabriela Moisescu-Pareja
...
Thérence Bois
Andrew Fitzgibbon
Bla.zej Banaszewski
Chad Martin
Dominic Masters
AI4CE
30
19
0
06 Oct 2023
Certifiably Robust Graph Contrastive Learning
Certifiably Robust Graph Contrastive Learning
Min Lin
Teng Xiao
Enyan Dai
Xiang Zhang
Suhang Wang
AAML
24
6
0
05 Oct 2023
Fragment-based Pretraining and Finetuning on Molecular Graphs
Fragment-based Pretraining and Finetuning on Molecular Graphs
Kha-Dinh Luong
Ambuj Singh
AI4CE
30
12
0
05 Oct 2023
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
Quanqi Hu
Dixian Zhu
Tianbao Yang
38
8
0
05 Oct 2023
Transformers are efficient hierarchical chemical graph learners
Transformers are efficient hierarchical chemical graph learners
Zihan Pengmei
Zimu Li
Chih-chan Tien
Risi Kondor
Aaron R Dinner
GNN
23
1
0
02 Oct 2023
PACIA: Parameter-Efficient Adapter for Few-Shot Molecular Property
  Prediction
PACIA: Parameter-Efficient Adapter for Few-Shot Molecular Property Prediction
Shiguang Wu
Yaqing Wang
Quanming Yao
27
4
0
01 Oct 2023
One for All: Towards Training One Graph Model for All Classification
  Tasks
One for All: Towards Training One Graph Model for All Classification Tasks
Hao Liu
Jiarui Feng
Lecheng Kong
Ningyue Liang
Dacheng Tao
Yixin Chen
Muhan Zhang
AI4CE
15
111
0
29 Sep 2023
Neural scaling laws for phenotypic drug discovery
Neural scaling laws for phenotypic drug discovery
Drew Linsley
John Griffin
Jason Parker Brown
Adam N Roose
Michael Frank
Peter Linsley
Steven Finkbeiner
Jeremy W. Linsley
28
0
0
28 Sep 2023
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property
  Prediction with 3D Information
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
Taojie Kuang
Yiming Ren
Zhixiang Ren
27
7
0
28 Sep 2023
Language models in molecular discovery
Language models in molecular discovery
Chaoqi Wang
Yibo Jiang
Chenghao Yang
Han Liu
Yuxin Chen
25
7
0
28 Sep 2023
GInX-Eval: Towards In-Distribution Evaluation of Graph Neural Network
  Explanations
GInX-Eval: Towards In-Distribution Evaluation of Graph Neural Network Explanations
Kenza Amara
Mennatallah El-Assady
Rex Ying
30
6
0
28 Sep 2023
Open Source Infrastructure for Differentiable Density Functional Theory
Open Source Infrastructure for Differentiable Density Functional Theory
Advika Vidhyadhiraja
Arun Pa Thiagarajan
Shang Zhu
Venkat Viswanathan
Bharath Ramsundar
27
0
0
27 Sep 2023
Explainable Artificial Intelligence for Drug Discovery and Development
  -- A Comprehensive Survey
Explainable Artificial Intelligence for Drug Discovery and Development -- A Comprehensive Survey
R. Alizadehsani
Solomon Sunday Oyelere
Sadiq Hussain
Rene Ripardo Calixto
V. H. C. de Albuquerque
M. Roshanzamir
Mohamed Rahouti
Senthil Kumar Jagatheesaperumal
42
18
0
21 Sep 2023
GPT-MolBERTa: GPT Molecular Features Language Model for molecular
  property prediction
GPT-MolBERTa: GPT Molecular Features Language Model for molecular property prediction
Suryanarayanan Balaji
Rishikesh Magar
Yayati Jadhav
and Amir Barati Farimani
21
13
0
20 Sep 2023
Deep Prompt Tuning for Graph Transformers
Deep Prompt Tuning for Graph Transformers
Reza Shirkavand
Heng-Chiao Huang
23
7
0
18 Sep 2023
Structure to Property: Chemical Element Embeddings and a Deep Learning
  Approach for Accurate Prediction of Chemical Properties
Structure to Property: Chemical Element Embeddings and a Deep Learning Approach for Accurate Prediction of Chemical Properties
S. Shermukhamedov
Dilorom Mamurjonova
Michael Probst
25
3
0
17 Sep 2023
Previous
123...567...151617
Next