Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning

The versatility of multimodal deep learning holds tremendous promise for advancing scientific research and practical applications. As this field continues to evolve, the collective power of cross-modal analysis promises to drive transformative innovations, opening new frontiers in chemical understanding and drug discovery. Hence, we introduce Asymmetric Contrastive Multimodal Learning (ACML), a specifically designed approach to enhance molecular understanding and accelerate advancements in drug discovery. ACML harnesses the power of effective asymmetric contrastive learning to seamlessly transfer information from various chemical modalities to molecular graph representations. By combining pre-trained chemical unimodal encoders and a shallow-designed graph encoder with 5 layers, ACML facilitates the assimilation of coordinated chemical semantics from different modalities, leading to comprehensive representation learning with efficient training. We demonstrate the effectiveness of this framework through large-scale cross-modality retrieval and isomer discrimination tasks. Additionally, ACML enhances interpretability by revealing chemical semantics in graph presentations and bolsters the expressive power of graph neural networks, as evidenced by improved performance in molecular property prediction tasks from MoleculeNet and Therapeutics Data Commons (TDC). Ultimately, ACML exemplifies its potential to revolutionize molecular representational learning, offering deeper insights into the chemical semantics of diverse modalities and paving the way for groundbreaking advancements in chemical research and drug discovery.
View on arXiv@article{xu2025_2311.06456, title={ Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning }, author={ Hao Xu and Yifei Wang and Yunrui Li and Lin Liu and Pengyu Hong }, journal={arXiv preprint arXiv:2311.06456}, year={ 2025 } }