Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.08558
Cited By
DepthSynth: Real-Time Realistic Synthetic Data Generation from CAD Models for 2.5D Recognition
27 February 2017
Benjamin Planche
Ziyan Wu
Kai Ma
Shanhui Sun
Stefan Kluckner
Terrence Chen
Andreas Hutter
Sergey Zakharov
H. Kosch
Jan Ernst
3DV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DepthSynth: Real-Time Realistic Synthetic Data Generation from CAD Models for 2.5D Recognition"
8 / 8 papers shown
Title
LRM-Zero: Training Large Reconstruction Models with Synthesized Data
Desai Xie
Sai Bi
Zhixin Shu
Kai Zhang
Zexiang Xu
Yi Zhou
Soren Pirk
Arie E. Kaufman
Xin Sun
Hao Tan
SyDa
61
14
0
13 Jun 2024
Active-Passive SimStereo -- Benchmarking the Cross-Generalization Capabilities of Deep Learning-based Stereo Methods
Laurent Valentin Jospin
A. Antony
Lian Xu
Hamid Laga
F. Boussaïd
Bennamoun
32
4
0
17 Sep 2022
Accurate Ground-Truth Depth Image Generation via Overfit Training of Point Cloud Registration using Local Frame Sets
Ji-Woo Kim
Minchang Kim
Y. Shin
Minyoung Chung
3DPC
29
1
0
14 Jul 2022
A Survey on RGB-D Datasets
Alexandre Lopes
Roberto Souza
Hélio Pedrini
3DV
MDE
26
33
0
15 Jan 2022
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
349
0
25 Sep 2019
Using Synthetic Data and Deep Networks to Recognize Primitive Shapes for Object Grasping
Yunzhi Lin
Chao Tang
Fu-Jen Chu
Patricio A. Vela
3DPC
21
39
0
12 Sep 2019
Keep it Unreal: Bridging the Realism Gap for 2.5D Recognition with Geometry Priors Only
Sergey Zakharov
Benjamin Planche
Ziyan Wu
Andreas Hutter
H. Kosch
Slobodan Ilic
27
23
0
24 Apr 2018
End-to-end learning of keypoint detector and descriptor for pose invariant 3D matching
G. Georgakis
Srikrishna Karanam
Ziyan Wu
Jan Ernst
Jana Kosecka
3DPC
3DV
15
62
0
22 Feb 2018
1