ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08389
  4. Cited By
Equivariance Through Parameter-Sharing

Equivariance Through Parameter-Sharing

27 February 2017
Siamak Ravanbakhsh
J. Schneider
Barnabás Póczós
ArXivPDFHTML

Papers citing "Equivariance Through Parameter-Sharing"

20 / 70 papers shown
Title
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
74
850
0
06 Mar 2020
On Learning Sets of Symmetric Elements
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
32
132
0
20 Feb 2020
Universal Equivariant Multilayer Perceptrons
Universal Equivariant Multilayer Perceptrons
Siamak Ravanbakhsh
110
48
0
07 Feb 2020
Learning Permutation Invariant Representations using Memory Networks
Learning Permutation Invariant Representations using Memory Networks
Shivam Kalra
Mohammed Adnan
Graham W. Taylor
Hamid Tizhoosh
27
24
0
18 Nov 2019
A Simple Proof of the Universality of Invariant/Equivariant Graph Neural
  Networks
A Simple Proof of the Universality of Invariant/Equivariant Graph Neural Networks
Takanori Maehara
Hoang NT
27
29
0
09 Oct 2019
Solving Continual Combinatorial Selection via Deep Reinforcement
  Learning
Solving Continual Combinatorial Selection via Deep Reinforcement Learning
Hyungseok Song
Hyeryung Jang
H. Tran
Se-eun Yoon
Kyunghwan Son
Donggyu Yun
Hyoju Chung
Yung Yi
18
10
0
09 Sep 2019
On the equivalence between graph isomorphism testing and function
  approximation with GNNs
On the equivalence between graph isomorphism testing and function approximation with GNNs
Zhengdao Chen
Soledad Villar
Lei Chen
Joan Bruna
20
275
0
29 May 2019
Incidence Networks for Geometric Deep Learning
Incidence Networks for Geometric Deep Learning
Marjan Albooyeh
Daniele Bertolini
Siamak Ravanbakhsh
GNN
29
26
0
27 May 2019
Universal Invariant and Equivariant Graph Neural Networks
Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven
Gabriel Peyré
33
287
0
13 May 2019
Relational Pooling for Graph Representations
Relational Pooling for Graph Representations
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Bruno Ribeiro
GNN
36
257
0
06 Mar 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
61
404
0
11 Feb 2019
Decentralization of Multiagent Policies by Learning What to Communicate
Decentralization of Multiagent Policies by Learning What to Communicate
James Paulos
Steven W. Chen
Daigo Shishika
Vijay Kumar
19
30
0
24 Jan 2019
Stochastic Deep Networks
Stochastic Deep Networks
Gwendoline de Bie
Gabriel Peyré
Marco Cuturi
30
21
0
19 Nov 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
310
0
05 Nov 2018
Janossy Pooling: Learning Deep Permutation-Invariant Functions for
  Variable-Size Inputs
Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Yun Liang
21
188
0
05 Nov 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
45
495
0
06 Jul 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional
  Neural Network
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
56
266
0
24 Jun 2018
Deep Models of Interactions Across Sets
Deep Models of Interactions Across Sets
Jason S. Hartford
Devon R. Graham
Kevin Leyton-Brown
Siamak Ravanbakhsh
30
157
0
07 Mar 2018
$\mathcal{G}$-SGD: Optimizing ReLU Neural Networks in its Positively
  Scale-Invariant Space
G\mathcal{G}G-SGD: Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space
Qi Meng
Shuxin Zheng
Huishuai Zhang
Wei Chen
Zhi-Ming Ma
Tie-Yan Liu
35
38
0
11 Feb 2018
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
62
488
0
11 Feb 2018
Previous
12