Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.08389
Cited By
Equivariance Through Parameter-Sharing
27 February 2017
Siamak Ravanbakhsh
J. Schneider
Barnabás Póczós
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Equivariance Through Parameter-Sharing"
20 / 70 papers shown
Title
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
74
850
0
06 Mar 2020
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
32
132
0
20 Feb 2020
Universal Equivariant Multilayer Perceptrons
Siamak Ravanbakhsh
110
48
0
07 Feb 2020
Learning Permutation Invariant Representations using Memory Networks
Shivam Kalra
Mohammed Adnan
Graham W. Taylor
Hamid Tizhoosh
27
24
0
18 Nov 2019
A Simple Proof of the Universality of Invariant/Equivariant Graph Neural Networks
Takanori Maehara
Hoang NT
27
29
0
09 Oct 2019
Solving Continual Combinatorial Selection via Deep Reinforcement Learning
Hyungseok Song
Hyeryung Jang
H. Tran
Se-eun Yoon
Kyunghwan Son
Donggyu Yun
Hyoju Chung
Yung Yi
18
10
0
09 Sep 2019
On the equivalence between graph isomorphism testing and function approximation with GNNs
Zhengdao Chen
Soledad Villar
Lei Chen
Joan Bruna
20
275
0
29 May 2019
Incidence Networks for Geometric Deep Learning
Marjan Albooyeh
Daniele Bertolini
Siamak Ravanbakhsh
GNN
29
26
0
27 May 2019
Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven
Gabriel Peyré
33
287
0
13 May 2019
Relational Pooling for Graph Representations
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Bruno Ribeiro
GNN
36
257
0
06 Mar 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
61
404
0
11 Feb 2019
Decentralization of Multiagent Policies by Learning What to Communicate
James Paulos
Steven W. Chen
Daigo Shishika
Vijay Kumar
19
30
0
24 Jan 2019
Stochastic Deep Networks
Gwendoline de Bie
Gabriel Peyré
Marco Cuturi
30
21
0
19 Nov 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
310
0
05 Nov 2018
Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Yun Liang
21
188
0
05 Nov 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
45
495
0
06 Jul 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
56
266
0
24 Jun 2018
Deep Models of Interactions Across Sets
Jason S. Hartford
Devon R. Graham
Kevin Leyton-Brown
Siamak Ravanbakhsh
30
157
0
07 Mar 2018
G
\mathcal{G}
G
-SGD: Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space
Qi Meng
Shuxin Zheng
Huishuai Zhang
Wei Chen
Zhi-Ming Ma
Tie-Yan Liu
35
38
0
11 Feb 2018
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
62
488
0
11 Feb 2018
Previous
1
2