Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1701.05369
Cited By
v1
v2
v3 (latest)
Variational Dropout Sparsifies Deep Neural Networks
19 January 2017
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Dropout Sparsifies Deep Neural Networks"
32 / 32 papers shown
Title
Task-Oriented Communications for Visual Navigation with Edge-Aerial Collaboration in Low Altitude Economy
Zhengru Fang
Zhenghao Liu
Jingjing Wang
Senkang Hu
Yu Guo
Yiqin Deng
Yuguang Fang
54
1
0
25 Apr 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
246
14
0
28 Jan 2025
Always-Sparse Training by Growing Connections with Guided Stochastic Exploration
Mike Heddes
Narayan Srinivasa
T. Givargis
Alexandru Nicolau
249
0
0
12 Jan 2024
Evil from Within: Machine Learning Backdoors through Hardware Trojans
Alexander Warnecke
Julian Speith
Janka Möller
Konrad Rieck
C. Paar
AAML
184
3
0
17 Apr 2023
COLT: Cyclic Overlapping Lottery Tickets for Faster Pruning of Convolutional Neural Networks
Md. Ismail Hossain
Mohammed Rakib
M. M. L. Elahi
Nabeel Mohammed
Shafin Rahman
113
1
0
24 Dec 2022
Stable Low-rank Tensor Decomposition for Compression of Convolutional Neural Network
Anh-Huy Phan
Konstantin Sobolev
Konstantin Sozykin
Dmitry Ermilov
Julia Gusak
P. Tichavský
Valeriy Glukhov
Ivan Oseledets
A. Cichocki
BDL
66
131
0
12 Aug 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
101
31
0
16 Jun 2020
AlgebraNets
Jordan Hoffmann
Simon Schmitt
Simon Osindero
Karen Simonyan
Erich Elsen
MoE
153
6
0
12 Jun 2020
The Power of Sparsity in Convolutional Neural Networks
Soravit Changpinyo
Mark Sandler
A. Zhmoginov
75
133
0
21 Feb 2017
Soft Weight-Sharing for Neural Network Compression
Karen Ullrich
Edward Meeds
Max Welling
169
419
0
13 Feb 2017
Generalized Dropout
Suraj Srinivas
R. Venkatesh Babu
BDL
57
47
0
21 Nov 2016
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
351
4,636
0
10 Nov 2016
Ultimate tensorization: compressing convolutional and FC layers alike
T. Garipov
D. Podoprikhin
Alexander Novikov
Dmitry Vetrov
70
191
0
10 Nov 2016
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
161
676
0
08 Nov 2016
Information Dropout: Learning Optimal Representations Through Noisy Computation
Alessandro Achille
Stefano Soatto
OOD
DRL
SSL
68
405
0
04 Nov 2016
Dynamic Network Surgery for Efficient DNNs
Yiwen Guo
Anbang Yao
Yurong Chen
84
1,060
0
16 Aug 2016
Learning Structured Sparsity in Deep Neural Networks
W. Wen
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
187
2,341
0
12 Aug 2016
Group Sparse Regularization for Deep Neural Networks
Simone Scardapane
Danilo Comminiello
Amir Hussain
A. Uncini
425
466
0
02 Jul 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
382
14,268
0
23 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
263
8,862
0
01 Oct 2015
Tensorizing Neural Networks
Alexander Novikov
D. Podoprikhin
A. Osokin
Dmitry Vetrov
117
886
0
22 Sep 2015
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
316
6,709
0
08 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
229
1,517
0
08 Jun 2015
Fast ConvNets Using Group-wise Brain Damage
V. Lebedev
Victor Lempitsky
AAML
191
449
0
08 Jun 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
467
43,347
0
11 Feb 2015
A Bayesian encourages dropout
S. Maeda
BDL
66
45
0
22 Dec 2014
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
494
43,698
0
17 Sep 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,922
0
20 Dec 2013
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
463
7,667
0
03 Jul 2012
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
262
2,627
0
29 Jun 2012
1