ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.02002
  4. Cited By
Smoothing with Couplings of Conditional Particle Filters

Smoothing with Couplings of Conditional Particle Filters

8 January 2017
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
ArXivPDFHTML

Papers citing "Smoothing with Couplings of Conditional Particle Filters"

11 / 11 papers shown
Title
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
19
6
0
04 Feb 2022
Unbiased Estimation of the Hessian for Partially Observed Diffusions
Unbiased Estimation of the Hessian for Partially Observed Diffusions
Neil K. Chada
Ajay Jasra
Fangyuan Yu
25
2
0
06 Sep 2021
Unbiased approximation of posteriors via coupled particle Markov chain
  Monte Carlo
Unbiased approximation of posteriors via coupled particle Markov chain Monte Carlo
W. van den Boom
Ajay Jasra
M. De Iorio
A. Beskos
J. Eriksson
32
9
0
09 Mar 2021
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via
  Control Variates
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates
Radu V. Craiu
X. Meng
16
9
0
28 Aug 2020
Simple conditions for convergence of sequential Monte Carlo genealogies
  with applications
Simple conditions for convergence of sequential Monte Carlo genealogies with applications
Suzie Brown
Paul A. Jenkins
A. M. Johansen
Jere Koskela
9
5
0
30 Jun 2020
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
27
47
0
23 May 2019
Learning dynamical systems with particle stochastic approximation EM
Learning dynamical systems with particle stochastic approximation EM
Andreas Svensson
Fredrik Lindsten
27
9
0
25 Jun 2018
Coupled conditional backward sampling particle filter
Coupled conditional backward sampling particle filter
Anthony Lee
Sumeetpal S. Singh
M. Vihola
16
33
0
15 Jun 2018
Unbiased Hamiltonian Monte Carlo with couplings
Unbiased Hamiltonian Monte Carlo with couplings
J. Heng
Pierre E. Jacob
20
63
0
01 Sep 2017
Importance sampling type estimators based on approximate marginal MCMC
Importance sampling type estimators based on approximate marginal MCMC
M. Vihola
Jouni Helske
Jordan Franks
21
25
0
08 Sep 2016
Pseudo-Marginal Hamiltonian Monte Carlo
Pseudo-Marginal Hamiltonian Monte Carlo
Johan Alenlöv
Arnaud Doucet
Fredrik Lindsten
36
22
0
08 Jul 2016
1