ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.00669
  4. Cited By
Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel
  Density Estimation in the Product Space

Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel Density Estimation in the Product Space

3 January 2017
Matthias Vestner
R. Litman
Emanuele Rodolà
A. Bronstein
Daniel Cremers
ArXivPDFHTML

Papers citing "Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel Density Estimation in the Product Space"

26 / 26 papers shown
Title
SRIF: Semantic Shape Registration Empowered by Diffusion-based Image
  Morphing and Flow Estimation
SRIF: Semantic Shape Registration Empowered by Diffusion-based Image Morphing and Flow Estimation
Mingze Sun
Chen Guo
Puhua Jiang
Shiwei Mao
Yurun Chen
Ruqi Huang
69
4
0
18 Sep 2024
Memory-Scalable and Simplified Functional Map Learning
Memory-Scalable and Simplified Functional Map Learning
Robin Magnet
M. Ovsjanikov
40
2
0
30 Mar 2024
Unsupervised Learning of Robust Spectral Shape Matching
Unsupervised Learning of Robust Spectral Shape Matching
Dongliang Cao
Paul Roetzer
Florian Bernard
3DPC
48
39
0
27 Apr 2023
S3M: Scalable Statistical Shape Modeling through Unsupervised
  Correspondences
S3M: Scalable Statistical Shape Modeling through Unsupervised Correspondences
Lennart Bastian
Alexander Bauman
Emily Hoppe
Vincent Burgin
Ha Young Kim
Mahdi Saleh
Benjamin Busam
Nassir Navab
30
8
0
15 Apr 2023
Searching Dense Point Correspondences via Permutation Matrix Learning
Searching Dense Point Correspondences via Permutation Matrix Learning
Zhiyuan Zhang
Jiadai Sun
Yuchao Dai
Bin Fan
Qi Liu
3DPC
34
2
0
26 Oct 2022
SRFeat: Learning Locally Accurate and Globally Consistent Non-Rigid
  Shape Correspondence
SRFeat: Learning Locally Accurate and Globally Consistent Non-Rigid Shape Correspondence
Lei Li
Souhaib Attaiki
M. Ovsjanikov
29
8
0
16 Sep 2022
Unsupervised Deep Multi-Shape Matching
Unsupervised Deep Multi-Shape Matching
Dongliang Cao
Florian Bernard
3DPC
3DV
29
30
0
20 Jul 2022
SeedGNN: Graph Neural Networks for Supervised Seeded Graph Matching
SeedGNN: Graph Neural Networks for Supervised Seeded Graph Matching
LIREN YU
Jiaming Xu
Xiaojun Lin
24
2
0
26 May 2022
Bending Graphs: Hierarchical Shape Matching using Gated Optimal
  Transport
Bending Graphs: Hierarchical Shape Matching using Gated Optimal Transport
Mahdi Saleh
Shun-cheng Wu
Luca Cosmo
Nassir Navab
Benjamin Busam
F. Tombari
29
22
0
03 Feb 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
  Go
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go
Marvin Eisenberger
David Novotny
Gael Kerchenbaum
Patrick Labatut
Natalia Neverova
Daniel Cremers
Andrea Vedaldi
3DH
3DPC
20
67
0
17 Jun 2021
Deep Shells: Unsupervised Shape Correspondence with Optimal Transport
Deep Shells: Unsupervised Shape Correspondence with Optimal Transport
Marvin Eisenberger
Aysim Toker
Laura Leal-Taixé
Daniel Cremers
OT
3DPC
21
77
0
28 Oct 2020
3D Meta Point Signature: Learning to Learn 3D Point Signature for 3D
  Dense Shape Correspondence
3D Meta Point Signature: Learning to Learn 3D Point Signature for 3D Dense Shape Correspondence
Hao Huang
Lingjing Wang
Xiang Li
Yi Fang
3DPC
23
0
0
21 Oct 2020
Structured Regularization of Functional Map Computations
Structured Regularization of Functional Map Computations
Jing Ren
M. Panine
Peter Wonka
M. Ovsjanikov
20
42
0
30 Sep 2020
A Dual Iterative Refinement Method for Non-rigid Shape Matching
A Dual Iterative Refinement Method for Non-rigid Shape Matching
Rui Xiang
Rongjie Lai
Hongkai Zhao
3DV
27
10
0
26 Jul 2020
Deep Geometric Functional Maps: Robust Feature Learning for Shape
  Correspondence
Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence
Nicolas Donati
Abhishek Sharma
M. Ovsjanikov
AAML
3DPC
27
154
0
31 Mar 2020
Efficient and Robust Shape Correspondence via Sparsity-Enforced
  Quadratic Assignment
Efficient and Robust Shape Correspondence via Sparsity-Enforced Quadratic Assignment
Rui Xiang
Rongjie Lai
Hongkai Zhao
31
9
0
19 Mar 2020
Inferring Super-Resolution Depth from a Moving Light-Source Enhanced
  RGB-D Sensor: A Variational Approach
Inferring Super-Resolution Depth from a Moving Light-Source Enhanced RGB-D Sensor: A Variational Approach
Lu Sang
Bjoern Haefner
Daniel Cremers
3DV
MDE
13
11
0
13 Dec 2019
Smooth Shells: Multi-Scale Shape Registration with Functional Maps
Smooth Shells: Multi-Scale Shape Registration with Functional Maps
Marvin Eisenberger
Zorah Lähner
Daniel Cremers
22
92
0
29 May 2019
ZerNet: Convolutional Neural Networks on Arbitrary Surfaces via Zernike
  Local Tangent Space Estimation
ZerNet: Convolutional Neural Networks on Arbitrary Surfaces via Zernike Local Tangent Space Estimation
Zhiyu Sun
Ethan Rooke
Jerome Charton
Yusen He
Jia Lu
Stephen Seung-Yeob Baek
29
21
0
03 Dec 2018
Higher-order Projected Power Iterations for Scalable Multi-Matching
Higher-order Projected Power Iterations for Scalable Multi-Matching
Florian Bernard
J. Thunberg
Paul Swoboda
Christian Theobalt
24
35
0
26 Nov 2018
Harmonic Alignment
Harmonic Alignment
Jay S. Stanley
Scott A. Gigante
Guy Wolf
Smita Krishnaswamy
DiffM
29
16
0
30 Sep 2018
Functional Maps Representation on Product Manifolds
Functional Maps Representation on Product Manifolds
Emanuele Rodolà
Zorah Lähner
A. Bronstein
M. Bronstein
Justin Solomon
27
18
0
28 Sep 2018
Reversible Harmonic Maps between Discrete Surfaces
Reversible Harmonic Maps between Discrete Surfaces
Danielle Ezuz
Justin Solomon
M. Ben-Chen
17
64
0
08 Jan 2018
Localized Manifold Harmonics for Spectral Shape Analysis
Localized Manifold Harmonics for Spectral Shape Analysis
Simone Melzi
Emanuele Rodolà
U. Castellani
M. Bronstein
12
59
0
09 Jul 2017
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis
Nitika Verma
Edmond Boyer
Jakob Verbeek
3DPC
GNN
26
25
0
16 Jun 2017
Deep Functional Maps: Structured Prediction for Dense Shape
  Correspondence
Deep Functional Maps: Structured Prediction for Dense Shape Correspondence
Or Litany
Tal Remez
Emanuele Rodolà
A. Bronstein
M. Bronstein
3DPC
30
284
0
27 Apr 2017
1