ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.07843
  4. Cited By
"What is Relevant in a Text Document?": An Interpretable Machine
  Learning Approach

"What is Relevant in a Text Document?": An Interpretable Machine Learning Approach

23 December 2016
L. Arras
F. Horn
G. Montavon
K. Müller
Wojciech Samek
ArXivPDFHTML

Papers citing ""What is Relevant in a Text Document?": An Interpretable Machine Learning Approach"

23 / 23 papers shown
Title
Path Analysis for Effective Fault Localization in Deep Neural Networks
Path Analysis for Effective Fault Localization in Deep Neural Networks
Soroush Hashemifar
Saeed Parsa
A. Kalaee
AAML
58
0
0
28 Jan 2025
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
86
82
0
17 Mar 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
265
2,248
0
24 Jun 2017
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
L. Arras
G. Montavon
K. Müller
Wojciech Samek
FAtt
39
353
0
22 Jun 2017
A Model Explanation System: Latest Updates and Extensions
A Model Explanation System: Latest Updates and Extensions
Ryan Turner
FAtt
32
15
0
30 Jun 2016
Explaining Predictions of Non-Linear Classifiers in NLP
Explaining Predictions of Non-Linear Classifiers in NLP
L. Arras
F. Horn
G. Montavon
K. Müller
Wojciech Samek
FAtt
69
117
0
23 Jun 2016
Identifying individual facial expressions by deconstructing a neural
  network
Identifying individual facial expressions by deconstructing a neural network
F. Arbabzadah
G. Montavon
K. Müller
Wojciech Samek
CVBM
FAtt
32
31
0
23 Jun 2016
Interpretable Deep Neural Networks for Single-Trial EEG Classification
Interpretable Deep Neural Networks for Single-Trial EEG Classification
I. Sturm
Sebastian Bach
Wojciech Samek
K. Müller
49
353
0
27 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
519
16,765
0
16 Feb 2016
Analyzing Classifiers: Fisher Vectors and Deep Neural Networks
Analyzing Classifiers: Fisher Vectors and Deep Neural Networks
Sebastian Bach
Alexander Binder
G. Montavon
K. Müller
Wojciech Samek
63
199
0
01 Dec 2015
Evaluating the visualization of what a Deep Neural Network has learned
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
99
1,189
0
21 Sep 2015
Character-level Convolutional Networks for Text Classification
Character-level Convolutional Networks for Text Classification
Xiang Zhang
Jiaqi Zhao
Yann LeCun
180
6,046
0
04 Sep 2015
Visualizing and Understanding Neural Models in NLP
Visualizing and Understanding Neural Models in NLP
Jiwei Li
Xinlei Chen
Eduard H. Hovy
Dan Jurafsky
MILM
FAtt
62
706
0
02 Jun 2015
Extraction of Salient Sentences from Labelled Documents
Extraction of Salient Sentences from Labelled Documents
Misha Denil
Alban Demiraj
Nando de Freitas
39
137
0
21 Dec 2014
Convolutional Neural Networks for Sentence Classification
Convolutional Neural Networks for Sentence Classification
Yoon Kim
AILaw
VLM
541
13,395
0
25 Aug 2014
On the Complexity of Best Arm Identification in Multi-Armed Bandit
  Models
On the Complexity of Best Arm Identification in Multi-Armed Bandit Models
E. Kaufmann
Olivier Cappé
Aurélien Garivier
102
1,021
0
16 Jul 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
157
7,252
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
278
15,825
0
12 Nov 2013
Distributed Representations of Words and Phrases and their
  Compositionality
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov
Ilya Sutskever
Kai Chen
G. Corrado
J. Dean
NAI
OCL
282
33,445
0
16 Oct 2013
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
534
31,406
0
16 Jan 2013
A Fast and Simple Algorithm for Training Neural Probabilistic Language
  Models
A Fast and Simple Algorithm for Training Neural Probabilistic Language Models
A. Mnih
Yee Whye Teh
85
578
0
27 Jun 2012
Natural Language Processing (almost) from Scratch
Natural Language Processing (almost) from Scratch
R. Collobert
Jason Weston
Léon Bottou
Michael Karlen
Koray Kavukcuoglu
Pavel P. Kuksa
121
7,711
0
02 Mar 2011
How to Explain Individual Classification Decisions
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
92
1,098
0
06 Dec 2009
1