ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.07119
  4. Cited By
FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

1 December 2016
Yaman Umuroglu
Nicholas J. Fraser
Giulio Gambardella
Michaela Blott
Philip H. W. Leong
Magnus Jahre
K. Vissers
    MQ
ArXivPDFHTML

Papers citing "FINN: A Framework for Fast, Scalable Binarized Neural Network Inference"

50 / 222 papers shown
Title
MinConvNets: A new class of multiplication-less Neural Networks
MinConvNets: A new class of multiplication-less Neural Networks
Xuecan Yang
S. Chaudhuri
Laurence Likforman
L. Naviner
14
0
0
23 Jan 2021
Fast convolutional neural networks on FPGAs with hls4ml
Fast convolutional neural networks on FPGAs with hls4ml
T. Aarrestad
Vladimir Loncar
Nicolò Ghielmetti
M. Pierini
S. Summers
...
N. Tran
Miaoyuan Liu
E. Kreinar
Zhenbin Wu
Duc Hoang
21
107
0
13 Jan 2021
A Framework for Fast Scalable BNN Inference using Googlenet and Transfer
  Learning
A Framework for Fast Scalable BNN Inference using Googlenet and Transfer Learning
E. Karthik
12
2
0
04 Jan 2021
FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with
  Fractional Activations
FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with Fractional Activations
Yichi Zhang
Junhao Pan
Xinheng Liu
Hongzheng Chen
Deming Chen
Zhiru Zhang
MQ
41
87
0
22 Dec 2020
Exposing the Robustness and Vulnerability of Hybrid 8T-6T SRAM Memory
  Architectures to Adversarial Attacks in Deep Neural Networks
Exposing the Robustness and Vulnerability of Hybrid 8T-6T SRAM Memory Architectures to Adversarial Attacks in Deep Neural Networks
Abhishek Moitra
Priyadarshini Panda
AAML
19
2
0
26 Nov 2020
Bringing AI To Edge: From Deep Learning's Perspective
Bringing AI To Edge: From Deep Learning's Perspective
Di Liu
Hao Kong
Xiangzhong Luo
Weichen Liu
Ravi Subramaniam
52
116
0
25 Nov 2020
FAT: Training Neural Networks for Reliable Inference Under Hardware
  Faults
FAT: Training Neural Networks for Reliable Inference Under Hardware Faults
Ussama Zahid
Giulio Gambardella
Nicholas J. Fraser
Michaela Blott
K. Vissers
16
44
0
11 Nov 2020
High-Performance Spectral Element Methods on Field-Programmable Gate
  Arrays
High-Performance Spectral Element Methods on Field-Programmable Gate Arrays
Martin Karp
Artur Podobas
Niclas Jansson
Tobias Kenter
Christian Plessl
P. Schlatter
Stefano Markidis
11
15
0
26 Oct 2020
A Survey on Deep Neural Network Compression: Challenges, Overview, and
  Solutions
A Survey on Deep Neural Network Compression: Challenges, Overview, and Solutions
Rahul Mishra
Hari Prabhat Gupta
Tanima Dutta
16
88
0
05 Oct 2020
GECKO: Reconciling Privacy, Accuracy and Efficiency in Embedded Deep
  Learning
GECKO: Reconciling Privacy, Accuracy and Efficiency in Embedded Deep Learning
Vasisht Duddu
A. Boutet
Virat Shejwalkar
GNN
21
4
0
02 Oct 2020
Binary Neural Networks for Memory-Efficient and Effective Visual Place
  Recognition in Changing Environments
Binary Neural Networks for Memory-Efficient and Effective Visual Place Recognition in Changing Environments
Bruno Ferrarini
Michael Milford
Klaus D. McDonald-Maier
Shoaib Ehsan
MQ
25
22
0
01 Oct 2020
An FPGA Accelerated Method for Training Feed-forward Neural Networks
  Using Alternating Direction Method of Multipliers and LSMR
An FPGA Accelerated Method for Training Feed-forward Neural Networks Using Alternating Direction Method of Multipliers and LSMR
Seyedeh Niusha Alavi Foumani
Ce Guo
Wayne Luk
22
3
0
06 Sep 2020
Running Neural Networks on the NIC
Running Neural Networks on the NIC
G. Siracusano
Salvator Galea
D. Sanvito
Mohammad Malekzadeh
Hamed Haddadi
G. Antichi
R. Bifulco
16
25
0
04 Sep 2020
Layer-specific Optimization for Mixed Data Flow with Mixed Precision in
  FPGA Design for CNN-based Object Detectors
Layer-specific Optimization for Mixed Data Flow with Mixed Precision in FPGA Design for CNN-based Object Detectors
Duy-Thanh Nguyen
Hyun Kim
Hyuk-Jae Lee
MQ
25
59
0
03 Sep 2020
FATNN: Fast and Accurate Ternary Neural Networks
FATNN: Fast and Accurate Ternary Neural Networks
Peng Chen
Bohan Zhuang
Chunhua Shen
MQ
6
15
0
12 Aug 2020
Resource-Efficient Speech Mask Estimation for Multi-Channel Speech
  Enhancement
Resource-Efficient Speech Mask Estimation for Multi-Channel Speech Enhancement
Lukas Pfeifenberger
Matthias Zöhrer
Günther Schindler
Wolfgang Roth
Holger Fröning
Franz Pernkopf
14
1
0
22 Jul 2020
Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with
  Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node
Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node
Alfio Di Mauro
Francesco Conti
Pasquale Davide Schiavone
D. Rossi
Luca Benini
19
9
0
17 Jul 2020
Accelerating Binarized Neural Networks via Bit-Tensor-Cores in Turing
  GPUs
Accelerating Binarized Neural Networks via Bit-Tensor-Cores in Turing GPUs
Ang Li
Simon Su
MQ
12
35
0
30 Jun 2020
BoMaNet: Boolean Masking of an Entire Neural Network
BoMaNet: Boolean Masking of an Entire Neural Network
Anuj Dubey
Rosario Cammarota
Aydin Aysu
AAML
17
44
0
16 Jun 2020
Automatic heterogeneous quantization of deep neural networks for
  low-latency inference on the edge for particle detectors
Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors
C. Coelho
Aki Kuusela
Shane Li
Zhuang Hao
T. Aarrestad
Vladimir Loncar
J. Ngadiuba
M. Pierini
Adrian Alan Pol
S. Summers
MQ
32
175
0
15 Jun 2020
Accelerating Deep Neuroevolution on Distributed FPGAs for Reinforcement
  Learning Problems
Accelerating Deep Neuroevolution on Distributed FPGAs for Reinforcement Learning Problems
Alexis Asseman
Nicolas Antoine
A. Ozcan
24
4
0
10 May 2020
A scalable and efficient convolutional neural network accelerator using
  HLS for a System on Chip design
A scalable and efficient convolutional neural network accelerator using HLS for a System on Chip design
K. Bjerge
J. Schougaard
Daniel Ejnar Larsen
15
1
0
27 Apr 2020
HCM: Hardware-Aware Complexity Metric for Neural Network Architectures
HCM: Hardware-Aware Complexity Metric for Neural Network Architectures
Alex Karbachevsky
Chaim Baskin
Evgenii Zheltonozhskii
Yevgeny Yermolin
F. Gabbay
A. Bronstein
A. Mendelson
27
11
0
19 Apr 2020
A Survey on Impact of Transient Faults on BNN Inference Accelerators
A Survey on Impact of Transient Faults on BNN Inference Accelerators
N. Khoshavi
Connor Broyles
Yu Bi
19
8
0
10 Apr 2020
Entropy-Based Modeling for Estimating Soft Errors Impact on Binarized
  Neural Network Inference
Entropy-Based Modeling for Estimating Soft Errors Impact on Binarized Neural Network Inference
N. Khoshavi
S. Sargolzaei
A. Roohi
Connor Broyles
Yu Bi
AAML
17
1
0
10 Apr 2020
Exposing Hardware Building Blocks to Machine Learning Frameworks
Exposing Hardware Building Blocks to Machine Learning Frameworks
Yash Akhauri
12
0
0
10 Apr 2020
LogicNets: Co-Designed Neural Networks and Circuits for
  Extreme-Throughput Applications
LogicNets: Co-Designed Neural Networks and Circuits for Extreme-Throughput Applications
Yaman Umuroglu
Yash Akhauri
Nicholas J. Fraser
Michaela Blott
MQ
12
86
0
06 Apr 2020
CNN2Gate: Toward Designing a General Framework for Implementation of
  Convolutional Neural Networks on FPGA
CNN2Gate: Toward Designing a General Framework for Implementation of Convolutional Neural Networks on FPGA
Alireza Ghaffari
Yvon Savaria
14
9
0
06 Apr 2020
High Bandwidth Memory on FPGAs: A Data Analytics Perspective
High Bandwidth Memory on FPGAs: A Data Analytics Perspective
Kaan Kara
C. Hagleitner
D. Diamantopoulos
D. Syrivelis
Gustavo Alonso
24
31
0
02 Apr 2020
Binary Neural Networks: A Survey
Binary Neural Networks: A Survey
Haotong Qin
Ruihao Gong
Xianglong Liu
Xiao Bai
Jingkuan Song
N. Sebe
MQ
50
458
0
31 Mar 2020
Evolutionary Bin Packing for Memory-Efficient Dataflow Inference
  Acceleration on FPGA
Evolutionary Bin Packing for Memory-Efficient Dataflow Inference Acceleration on FPGA
M. Kroes
L. Petrica
S. Cotofana
Michaela Blott
21
7
0
24 Mar 2020
Compressing deep neural networks on FPGAs to binary and ternary
  precision with HLS4ML
Compressing deep neural networks on FPGAs to binary and ternary precision with HLS4ML
G. D. Guglielmo
Javier Mauricio Duarte
Philip C. Harris
Duc Hoang
S. Jindariani
...
D. Rankin
Sheila Sagear
S. Summers
N. Tran
Zhenbin Wu
MQ
24
87
0
11 Mar 2020
LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree
  Implementations
LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations
Seyedramin Rasoulinezhad
Siddhartha
Hao Zhou
Lingli Wang
David Boland
Philip H. W. Leong
9
8
0
06 Mar 2020
MajorityNets: BNNs Utilising Approximate Popcount for Improved
  Efficiency
MajorityNets: BNNs Utilising Approximate Popcount for Improved Efficiency
Seyedramin Rasoulinezhad
Sean Fox
Hao Zhou
Lingli Wang
David Boland
Philip H. W. Leong
9
4
0
27 Feb 2020
Making Logic Learnable With Neural Networks
Making Logic Learnable With Neural Networks
Tobias Brudermueller
Dennis L. Shung
A. Stanley
Johannes Stegmaier
Smita Krishnaswamy
NAI
10
2
0
10 Feb 2020
SQWA: Stochastic Quantized Weight Averaging for Improving the
  Generalization Capability of Low-Precision Deep Neural Networks
SQWA: Stochastic Quantized Weight Averaging for Improving the Generalization Capability of Low-Precision Deep Neural Networks
Sungho Shin
Yoonho Boo
Wonyong Sung
MQ
25
3
0
02 Feb 2020
Resource-Efficient Neural Networks for Embedded Systems
Resource-Efficient Neural Networks for Embedded Systems
Wolfgang Roth
Günther Schindler
Lukas Pfeifenberger
Robert Peharz
Sebastian Tschiatschek
Holger Fröning
Franz Pernkopf
Zoubin Ghahramani
34
47
0
07 Jan 2020
TentacleNet: A Pseudo-Ensemble Template for Accurate Binary
  Convolutional Neural Networks
TentacleNet: A Pseudo-Ensemble Template for Accurate Binary Convolutional Neural Networks
Luca Mocerino
A. Calimera
MQ
8
4
0
20 Dec 2019
Efficient Error-Tolerant Quantized Neural Network Accelerators
Efficient Error-Tolerant Quantized Neural Network Accelerators
Giulio Gambardella
Johannes Kappauf
Michaela Blott
Christoph Doehring
M. Kumm
P. Zipf
K. Vissers
AAML
4
28
0
16 Dec 2019
QubitHD: A Stochastic Acceleration Method for HD Computing-Based Machine
  Learning
QubitHD: A Stochastic Acceleration Method for HD Computing-Based Machine Learning
Samuel Bosch
Alexander Sanchez de la Cerda
Mohsen Imani
Tajana Simunic
G. Micheli
13
8
0
27 Nov 2019
CoopNet: Cooperative Convolutional Neural Network for Low-Power MCUs
CoopNet: Cooperative Convolutional Neural Network for Low-Power MCUs
Luca Mocerino
A. Calimera
MQ
13
9
0
19 Nov 2019
AddNet: Deep Neural Networks Using FPGA-Optimized Multipliers
AddNet: Deep Neural Networks Using FPGA-Optimized Multipliers
Julian Faraone
M. Kumm
M. Hardieck
P. Zipf
Xueyuan Liu
David Boland
Philip H. W. Leong
MQ
6
45
0
19 Nov 2019
MaskedNet: The First Hardware Inference Engine Aiming Power Side-Channel
  Protection
MaskedNet: The First Hardware Inference Engine Aiming Power Side-Channel Protection
Anuj Dubey
Rosario Cammarota
Aydin Aysu
AAML
16
78
0
29 Oct 2019
LUTNet: Learning FPGA Configurations for Highly Efficient Neural Network
  Inference
LUTNet: Learning FPGA Configurations for Highly Efficient Neural Network Inference
Erwei Wang
James J. Davis
P. Cheung
George A. Constantinides
MQ
9
41
0
24 Oct 2019
Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge
  Computing
Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing
En Li
Liekang Zeng
Zhi Zhou
Xu Chen
4
615
0
04 Oct 2019
Concept Drift Detection and Adaptation with Weak Supervision on
  Streaming Unlabeled Data
Concept Drift Detection and Adaptation with Weak Supervision on Streaming Unlabeled Data
Abhijit Suprem
AI4TS
13
3
0
02 Oct 2019
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object
  Detection on FPGAs
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAs
Caiwen Ding
Shuo Wang
Ning Liu
Kaidi Xu
Yanzhi Wang
Yun Liang
MQ
16
89
0
29 Sep 2019
Accurate and Compact Convolutional Neural Networks with Trained
  Binarization
Accurate and Compact Convolutional Neural Networks with Trained Binarization
Zhe Xu
R. Cheung
MQ
27
54
0
25 Sep 2019
Structured Binary Neural Networks for Image Recognition
Structured Binary Neural Networks for Image Recognition
Bohan Zhuang
Chunhua Shen
Mingkui Tan
Peng Chen
Lingqiao Liu
Ian Reid
MQ
22
17
0
22 Sep 2019
Unrolling Ternary Neural Networks
Unrolling Ternary Neural Networks
Stephen Tridgell
M. Kumm
M. Hardieck
David Boland
Duncan J. M. Moss
P. Zipf
Philip H. W. Leong
24
26
0
09 Sep 2019
Previous
12345
Next