ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.05299
  4. Cited By
A Survey of Inductive Biases for Factorial Representation-Learning

A Survey of Inductive Biases for Factorial Representation-Learning

15 December 2016
Karl Ridgeway
    DRLCML
ArXiv (abs)PDFHTML

Papers citing "A Survey of Inductive Biases for Factorial Representation-Learning"

45 / 45 papers shown
Title
Transferring disentangled representations: bridging the gap between synthetic and real images
Transferring disentangled representations: bridging the gap between synthetic and real images
Jacopo Dapueto
Nicoletta Noceti
Francesca Odone
OOD
110
0
0
26 Sep 2024
Defining and Measuring Disentanglement for non-Independent Factors of
  Variation
Defining and Measuring Disentanglement for non-Independent Factors of Variation
Antonio Almudévar
Alfonso Ortega
Luis Vicente
A. Miguel
Eduardo Lleida
CoGeDRL
73
1
0
13 Aug 2024
LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multimodal Large Language Models
LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multimodal Large Language Models
Mengdan Zhu
Raasikh Kanjiani
Jiahui Lu
Andrew Choi
Qirui Ye
Liang Zhao
DiffM
92
1
0
21 Jun 2024
SODA: Bottleneck Diffusion Models for Representation Learning
SODA: Bottleneck Diffusion Models for Representation Learning
Drew A. Hudson
Daniel Zoran
Mateusz Malinowski
Andrew Kyle Lampinen
Andrew Jaegle
James L. McClelland
Loic Matthey
Felix Hill
Alexander Lerchner
DiffM
106
56
0
29 Nov 2023
Are We Using Autoencoders in a Wrong Way?
Are We Using Autoencoders in a Wrong Way?
Gabriele Martino
Davide Moroni
M. Martinelli
33
1
0
04 Sep 2023
Disentanglement via Latent Quantization
Disentanglement via Latent Quantization
Kyle Hsu
W. Dorrell
James C. R. Whittington
Jiajun Wu
Chelsea Finn
DRL
163
27
0
28 May 2023
An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly
  Better?
An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly Better?
Tyler R. Scott
Ting Liu
Michael C. Mozer
Andrew C. Gallagher
CVBMFedML
68
1
0
09 Nov 2022
$β$-CapsNet: Learning Disentangled Representation for CapsNet by
  Information Bottleneck
βββ-CapsNet: Learning Disentangled Representation for CapsNet by Information Bottleneck
Ming-fei Hu
Jian Liu
SSL
79
1
0
12 Sep 2022
Controllable Data Generation by Deep Learning: A Review
Controllable Data Generation by Deep Learning: A Review
Shiyu Wang
Yuanqi Du
Xiaojie Guo
Bo Pan
Zhaohui Qin
Liang Zhao
101
28
0
19 Jul 2022
Disentangling Autoencoders (DAE)
Disentangling Autoencoders (DAE)
Jaehoon Cha
Jeyan Thiyagalingam
CoGe
83
1
0
20 Feb 2022
Investigating Explainability of Generative AI for Code through
  Scenario-based Design
Investigating Explainability of Generative AI for Code through Scenario-based Design
Jiao Sun
Q. V. Liao
Michael J. Muller
Mayank Agarwal
Stephanie Houde
Kartik Talamadupula
Justin D. Weisz
83
165
0
10 Feb 2022
GANSlider: How Users Control Generative Models for Images using Multiple
  Sliders with and without Feedforward Information
GANSlider: How Users Control Generative Models for Images using Multiple Sliders with and without Feedforward Information
Hai Dang
Lukas Mecke
Daniel Buschek
69
34
0
02 Feb 2022
DAReN: A Collaborative Approach Towards Reasoning And Disentangling
DAReN: A Collaborative Approach Towards Reasoning And Disentangling
Pritish Sahu
Kalliopi Basioti
Vladimir Pavlovic
68
1
0
27 Sep 2021
Invariance-based Multi-Clustering of Latent Space Embeddings for
  Equivariant Learning
Invariance-based Multi-Clustering of Latent Space Embeddings for Equivariant Learning
Minh Nguyen
A. Roy
Haoran Zhang
BDLDRL
102
1
0
25 Jul 2021
VDSM: Unsupervised Video Disentanglement with State-Space Modeling and
  Deep Mixtures of Experts
VDSM: Unsupervised Video Disentanglement with State-Space Modeling and Deep Mixtures of Experts
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CoGe
87
8
0
12 Mar 2021
On Disentanglement in Gaussian Process Variational Autoencoders
On Disentanglement in Gaussian Process Variational Autoencoders
Simon Bing
Vincent Fortuin
Gunnar Rätsch
CMLCoGeBDLDRL
81
9
0
10 Feb 2021
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement
A. Ross
Finale Doshi-Velez
DRL
84
13
0
09 Feb 2021
Evaluating the Interpretability of Generative Models by Interactive
  Reconstruction
Evaluating the Interpretability of Generative Models by Interactive Reconstruction
A. Ross
Nina Chen
Elisa Zhao Hang
Elena L. Glassman
Finale Doshi-Velez
158
49
0
02 Feb 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGeDRL
89
85
0
16 Dec 2020
Disentangled Information Bottleneck
Disentangled Information Bottleneck
Ziqi Pan
Li Niu
Jianfu Zhang
Liqing Zhang
73
37
0
14 Dec 2020
Disentangling Action Sequences: Discovering Correlated Samples
Disentangling Action Sequences: Discovering Correlated Samples
Jiantao Wu
Lin Wang
CMLCoGeDRL
13
0
0
17 Oct 2020
Surrogate Model For Field Optimization Using Beta-VAE Based Regression
Surrogate Model For Field Optimization Using Beta-VAE Based Regression
Ajitabh Kumar
48
0
0
26 Aug 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
148
134
0
21 Jul 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CMLDRL
106
26
0
14 Jul 2020
Evaluating the Disentanglement of Deep Generative Models through
  Manifold Topology
Evaluating the Disentanglement of Deep Generative Models through Manifold Topology
Sharon Zhou
E. Zelikman
F. Lu
A. Ng
Gunnar Carlsson
Stefano Ermon
DRL
69
27
0
05 Jun 2020
Adversarial Latent Autoencoders
Adversarial Latent Autoencoders
Stanislav Pidhorskyi
Donald Adjeroh
Gianfranco Doretto
GANDRL
97
261
0
09 Apr 2020
Learning Group Structure and Disentangled Representations of Dynamical
  Environments
Learning Group Structure and Disentangled Representations of Dynamical Environments
Robin Quessard
Thomas D. Barrett
W. Clements
DRL
61
21
0
17 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGeOODDRL
282
321
0
07 Feb 2020
Toward a Controllable Disentanglement Network
Toward a Controllable Disentanglement Network
Zengjie Song
Oluwasanmi Koyejo
Jiangshe Zhang
DRL
41
3
0
22 Jan 2020
Learning Controllable Disentangled Representations with Decorrelation
  Regularization
Learning Controllable Disentangled Representations with Decorrelation Regularization
Zengjie Song
Oluwasanmi Koyejo
Jiangshe Zhang
47
1
0
25 Dec 2019
Dual Encoder-Decoder based Generative Adversarial Networks for
  Disentangled Facial Representation Learning
Dual Encoder-Decoder based Generative Adversarial Networks for Disentangled Facial Representation Learning
Cong Hu
Zhenhua Feng
Xiaojun Wu
J. Kittler
CVBMGANDRL
48
11
0
19 Sep 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRLBDLCoGe
198
25
0
05 Sep 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGeDRL
76
96
0
26 Aug 2019
Learning Disentangled Representations of Timbre and Pitch for Musical
  Instrument Sounds Using Gaussian Mixture Variational Autoencoders
Learning Disentangled Representations of Timbre and Pitch for Musical Instrument Sounds Using Gaussian Mixture Variational Autoencoders
Yin-Jyun Luo
Kat R. Agres
Dorien Herremans
103
46
0
19 Jun 2019
Generative Restricted Kernel Machines: A Framework for Multi-view
  Generation and Disentangled Feature Learning
Generative Restricted Kernel Machines: A Framework for Multi-view Generation and Disentangled Feature Learning
Arun Pandey
J. Schreurs
Johan A. K. Suykens
80
13
0
19 Jun 2019
InfoGAN-CR and ModelCentrality: Self-supervised Model Training and
  Selection for Disentangling GANs
InfoGAN-CR and ModelCentrality: Self-supervised Model Training and Selection for Disentangling GANs
Zinan Lin
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
DRL
110
37
0
14 Jun 2019
Affine Variational Autoencoders: An Efficient Approach for Improving
  Generalization and Robustness to Distribution Shift
Affine Variational Autoencoders: An Efficient Approach for Improving Generalization and Robustness to Distribution Shift
Rene Bidart
A. Wong
DRLOOD
31
5
0
13 May 2019
Variational Autoencoders Pursue PCA Directions (by Accident)
Variational Autoencoders Pursue PCA Directions (by Accident)
Michal Rolínek
Dominik Zietlow
Georg Martius
OODDRL
78
153
0
17 Dec 2018
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
910
10,632
0
12 Dec 2018
InfoCatVAE: Representation Learning with Categorical Variational
  Autoencoders
InfoCatVAE: Representation Learning with Categorical Variational Autoencoders
Edouard Pineau
Marc Lelarge
DRL
83
13
0
20 Jun 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGeDRL
73
832
0
10 Apr 2018
Learning beyond datasets: Knowledge Graph Augmented Neural Networks for
  Natural language Processing
Learning beyond datasets: Knowledge Graph Augmented Neural Networks for Natural language Processing
K. Annervaz
Somnath Basu Roy Chowdhury
Ambedkar Dukkipati
GNN
86
73
0
16 Feb 2018
Isolating Sources of Disentanglement in Variational Autoencoders
Isolating Sources of Disentanglement in Variational Autoencoders
T. Chen
Xuechen Li
Roger C. Grosse
David Duvenaud
DRL
96
445
0
14 Feb 2018
Variational Inference of Disentangled Latent Concepts from Unlabeled
  Observations
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Abhishek Kumar
P. Sattigeri
Avinash Balakrishnan
BDLDRL
123
523
0
02 Nov 2017
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
I. Higgins
Arka Pal
Andrei A. Rusu
Loic Matthey
Christopher P. Burgess
Alexander Pritzel
M. Botvinick
Charles Blundell
Alexander Lerchner
DRL
173
417
0
26 Jul 2017
1