ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.05231
  4. Cited By
Tunable Efficient Unitary Neural Networks (EUNN) and their application
  to RNNs

Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs

15 December 2016
Li Jing
Yichen Shen
T. Dubček
J. Peurifoy
S. Skirlo
Yann LeCun
Max Tegmark
Marin Soljacic
ArXivPDFHTML

Papers citing "Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs"

50 / 103 papers shown
Title
Quantum-PEFT: Ultra parameter-efficient fine-tuning
Toshiaki Koike-Akino
F. Tonin
Yongtao Wu
Frank Zhengqing Wu
Leyla Naz Candogan
V. Cevher
MQ
54
3
0
07 Mar 2025
HadamRNN: Binary and Sparse Ternary Orthogonal RNNs
HadamRNN: Binary and Sparse Ternary Orthogonal RNNs
Armand Foucault
Franck Mamalet
François Malgouyres
MQ
79
0
0
28 Jan 2025
IGNN-Solver: A Graph Neural Solver for Implicit Graph Neural Networks
IGNN-Solver: A Graph Neural Solver for Implicit Graph Neural Networks
Junchao Lin
Zenan Ling
Zhanbo Feng
Feng Zhou
Jingwen Xu
Feng Zhou
Tianqi Hou
Zhenyu Liao
Robert C. Qiu
GNN
AI4CE
52
0
0
11 Oct 2024
Unitary convolutions for learning on graphs and groups
Unitary convolutions for learning on graphs and groups
B. Kiani
Lukas Fesser
Melanie Weber
GNN
40
1
0
07 Oct 2024
Unlocking the Power of LSTM for Long Term Time Series Forecasting
Unlocking the Power of LSTM for Long Term Time Series Forecasting
Yaxuan Kong
Zepu Wang
Yuqi Nie
Tian Zhou
Stefan Zohren
Yuxuan Liang
Peng Sun
Qingsong Wen
AI4TS
27
12
0
19 Aug 2024
RotRNN: Modelling Long Sequences with Rotations
RotRNN: Modelling Long Sequences with Rotations
Rares Dolga
Kai Biegun
Jake Cunningham
David Barber
42
2
0
09 Jul 2024
Neural Gaussian Scale-Space Fields
Neural Gaussian Scale-Space Fields
Felix Mujkanovic
Ntumba Elie Nsampi
Christian Theobalt
Hans-Peter Seidel
Thomas Leimkuhler
43
1
0
31 May 2024
Approximately-symmetric neural networks for quantum spin liquids
Approximately-symmetric neural networks for quantum spin liquids
Dominik S. Kufel
Jack Kemp
Simon M. Linsel
C. Laumann
Norman Y. Yao
39
3
0
27 May 2024
Graph Unitary Message Passing
Graph Unitary Message Passing
Haiquan Qiu
Yatao Bian
Quanming Yao
37
2
0
17 Mar 2024
Quantized Approximately Orthogonal Recurrent Neural Networks
Quantized Approximately Orthogonal Recurrent Neural Networks
Armand Foucault
Franck Mamalet
Franccois Malgouyres
MQ
29
1
0
05 Feb 2024
Positional Encoding Helps Recurrent Neural Networks Handle a Large
  Vocabulary
Positional Encoding Helps Recurrent Neural Networks Handle a Large Vocabulary
Takashi Morita
16
3
0
31 Jan 2024
Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization
Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization
Weiyang Liu
Zeju Qiu
Yao Feng
Yuliang Xiu
Yuxuan Xue
...
Songyou Peng
Yandong Wen
Michael J. Black
Adrian Weller
Bernhard Schölkopf
50
57
0
10 Nov 2023
Adaptive-saturated RNN: Remember more with less instability
Adaptive-saturated RNN: Remember more with less instability
Khoi Minh Nguyen-Duy
Quang-Cuong Pham
B. T. Nguyen
ODL
22
1
0
24 Apr 2023
Resurrecting Recurrent Neural Networks for Long Sequences
Resurrecting Recurrent Neural Networks for Long Sequences
Antonio Orvieto
Samuel L. Smith
Albert Gu
Anushan Fernando
Çağlar Gülçehre
Razvan Pascanu
Soham De
88
268
0
11 Mar 2023
DOSnet as a Non-Black-Box PDE Solver: When Deep Learning Meets Operator
  Splitting
DOSnet as a Non-Black-Box PDE Solver: When Deep Learning Meets Operator Splitting
Yuan Lan
Zerui Li
Jie Sun
Yang Xiang
16
10
0
11 Dec 2022
Learning to Optimize Quasi-Newton Methods
Learning to Optimize Quasi-Newton Methods
Isaac Liao
Rumen Dangovski
Jakob N. Foerster
Marin Soljacic
38
4
0
11 Oct 2022
Random orthogonal additive filters: a solution to the
  vanishing/exploding gradient of deep neural networks
Random orthogonal additive filters: a solution to the vanishing/exploding gradient of deep neural networks
Andrea Ceni
ODL
25
3
0
03 Oct 2022
Omnigrok: Grokking Beyond Algorithmic Data
Omnigrok: Grokking Beyond Algorithmic Data
Ziming Liu
Eric J. Michaud
Max Tegmark
56
77
0
03 Oct 2022
Quantum Vision Transformers
Quantum Vision Transformers
El Amine Cherrat
Iordanis Kerenidis
Natansh Mathur
Jonas Landman
M. Strahm
Yun. Y Li
ViT
34
55
0
16 Sep 2022
Orthogonal Gated Recurrent Unit with Neumann-Cayley Transformation
Orthogonal Gated Recurrent Unit with Neumann-Cayley Transformation
Edison Mucllari
Vasily Zadorozhnyy
Cole Pospisil
D. Nguyen
Qiang Ye
41
3
0
12 Aug 2022
Assessing the Unitary RNN as an End-to-End Compositional Model of Syntax
Assessing the Unitary RNN as an End-to-End Compositional Model of Syntax
Jean-Philippe Bernardy
Shalom Lappin
38
1
0
11 Aug 2022
Arithmetic Circuits, Structured Matrices and (not so) Deep Learning
Arithmetic Circuits, Structured Matrices and (not so) Deep Learning
Atri Rudra
13
1
0
24 Jun 2022
RF-Next: Efficient Receptive Field Search for Convolutional Neural
  Networks
RF-Next: Efficient Receptive Field Search for Convolutional Neural Networks
Shanghua Gao
Zhong-Yu Li
Qi Han
Ming-Ming Cheng
Liang Wang
32
34
0
14 Jun 2022
Entangled Residual Mappings
Entangled Residual Mappings
Mathias Lechner
Ramin Hasani
Z. Babaiee
Radu Grosu
Daniela Rus
T. Henzinger
Sepp Hochreiter
14
5
0
02 Jun 2022
Estimating the randomness of quantum circuit ensembles up to 50 qubits
Estimating the randomness of quantum circuit ensembles up to 50 qubits
Minzhao Liu
Junyu Liu
Yuri Alexeev
Liang Jiang
29
8
0
19 May 2022
Feedback Gradient Descent: Efficient and Stable Optimization with
  Orthogonality for DNNs
Feedback Gradient Descent: Efficient and Stable Optimization with Orthogonality for DNNs
Fanchen Bu
D. Chang
28
6
0
12 May 2022
projUNN: efficient method for training deep networks with unitary
  matrices
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
43
32
0
10 Mar 2022
Pixelated Butterfly: Simple and Efficient Sparse training for Neural
  Network Models
Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models
Tri Dao
Beidi Chen
Kaizhao Liang
Jiaming Yang
Zhao Song
Atri Rudra
Christopher Ré
33
75
0
30 Nov 2021
Heavy Ball Neural Ordinary Differential Equations
Heavy Ball Neural Ordinary Differential Equations
Hedi Xia
Vai Suliafu
H. Ji
T. Nguyen
Andrea L. Bertozzi
Stanley J. Osher
Bao Wang
38
56
0
10 Oct 2021
Efficient Identification of Butterfly Sparse Matrix Factorizations
Efficient Identification of Butterfly Sparse Matrix Factorizations
Léon Zheng
E. Riccietti
Rémi Gribonval
44
6
0
04 Oct 2021
Acceleration Method for Learning Fine-Layered Optical Neural Networks
Acceleration Method for Learning Fine-Layered Optical Neural Networks
K. Aoyama
H. Sawada
27
1
0
01 Sep 2021
Coordinate descent on the orthogonal group for recurrent neural network
  training
Coordinate descent on the orthogonal group for recurrent neural network training
E. Massart
V. Abrol
37
10
0
30 Jul 2021
Recurrent Neural Network from Adder's Perspective: Carry-lookahead RNN
Recurrent Neural Network from Adder's Perspective: Carry-lookahead RNN
Haowei Jiang
Fei-wei Qin
Jin Cao
Yong Peng
Yanli Shao
LRM
ODL
16
42
0
22 Jun 2021
Scaling-up Diverse Orthogonal Convolutional Networks with a Paraunitary
  Framework
Scaling-up Diverse Orthogonal Convolutional Networks with a Paraunitary Framework
Jiahao Su
Wonmin Byeon
Furong Huang
17
9
0
16 Jun 2021
Parallelized Computation and Backpropagation Under Angle-Parametrized
  Orthogonal Matrices
Parallelized Computation and Backpropagation Under Angle-Parametrized Orthogonal Matrices
F. Hamze
27
1
0
30 May 2021
Slower is Better: Revisiting the Forgetting Mechanism in LSTM for Slower
  Information Decay
Slower is Better: Revisiting the Forgetting Mechanism in LSTM for Slower Information Decay
H. Chien
Javier S. Turek
Nicole M. Beckage
Vy A. Vo
C. Honey
Ted Willke
14
15
0
12 May 2021
Improving Molecular Graph Neural Network Explainability with
  Orthonormalization and Induced Sparsity
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity
Ryan Henderson
Djork-Arné Clevert
F. Montanari
33
26
0
11 May 2021
RotLSTM: Rotating Memories in Recurrent Neural Networks
RotLSTM: Rotating Memories in Recurrent Neural Networks
Vlad Velici
Adam Prugel-Bennett
RALM
VLM
17
1
0
01 May 2021
Learning with Hyperspherical Uniformity
Learning with Hyperspherical Uniformity
Weiyang Liu
Rongmei Lin
Zhen Liu
Li Xiong
Bernhard Schölkopf
Adrian Weller
37
35
0
02 Mar 2021
Deep Unitary Convolutional Neural Networks
Deep Unitary Convolutional Neural Networks
Hao-Yuan Chang
Kang L. Wang
12
2
0
23 Feb 2021
A Differential Geometry Perspective on Orthogonal Recurrent Models
A Differential Geometry Perspective on Orthogonal Recurrent Models
Omri Azencot
N. Benjamin Erichson
M. Ben-Chen
Michael W. Mahoney
AI4CE
13
5
0
18 Feb 2021
Implicit Bias of Linear RNNs
Implicit Bias of Linear RNNs
M Motavali Emami
Mojtaba Sahraee-Ardakan
Parthe Pandit
S. Rangan
A. Fletcher
15
11
0
19 Jan 2021
MC-LSTM: Mass-Conserving LSTM
MC-LSTM: Mass-Conserving LSTM
Pieter-Jan Hoedt
Frederik Kratzert
D. Klotz
Christina Halmich
Markus Holzleitner
G. Nearing
Sepp Hochreiter
G. Klambauer
13
59
0
13 Jan 2021
Learning quantum data with the quantum Earth Mover's distance
Learning quantum data with the quantum Earth Mover's distance
B. Kiani
Giacomo De Palma
M. Marvian
Zi-Wen Liu
S. Lloyd
21
45
0
08 Jan 2021
Kaleidoscope: An Efficient, Learnable Representation For All Structured
  Linear Maps
Kaleidoscope: An Efficient, Learnable Representation For All Structured Linear Maps
Tri Dao
N. Sohoni
Albert Gu
Matthew Eichhorn
Amit Blonder
Megan Leszczynski
Atri Rudra
Christopher Ré
17
46
0
29 Dec 2020
Short-Term Memory Optimization in Recurrent Neural Networks by
  Autoencoder-based Initialization
Short-Term Memory Optimization in Recurrent Neural Networks by Autoencoder-based Initialization
Antonio Carta
A. Sperduti
D. Bacciu
ODL
22
0
0
05 Nov 2020
Continual Learning in Low-rank Orthogonal Subspaces
Continual Learning in Low-rank Orthogonal Subspaces
Arslan Chaudhry
Naeemullah Khan
P. Dokania
Philip Torr
CLL
33
114
0
22 Oct 2020
RNN Training along Locally Optimal Trajectories via Frank-Wolfe
  Algorithm
RNN Training along Locally Optimal Trajectories via Frank-Wolfe Algorithm
Yun Yue
Ming Li
Venkatesh Saligrama
Ziming Zhang
11
4
0
12 Oct 2020
Shuffling Recurrent Neural Networks
Shuffling Recurrent Neural Networks
Michael Rotman
Lior Wolf
BDL
17
35
0
14 Jul 2020
Lipschitz Recurrent Neural Networks
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
30
107
0
22 Jun 2020
123
Next