Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.04600
Cited By
Predicting Process Behaviour using Deep Learning
14 December 2016
Joerg Evermann
Jana-Rebecca Rehse
Peter Fettke
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Predicting Process Behaviour using Deep Learning"
33 / 83 papers shown
Title
Time Matters: Time-Aware LSTMs for Predictive Business Process Monitoring
A. Nguyen
Srijeet Chatterjee
Sven Weinzierl
Leo Schwinn
Martin Matzner
Bjoern M. Eskofier
AI4TS
11
23
0
02 Oct 2020
Deep Learning for Predictive Business Process Monitoring: Review and Benchmark
Efrén Rama-Maneiro
J. Vidal
Manuel Lama
19
74
0
24 Sep 2020
Local Post-Hoc Explanations for Predictive Process Monitoring in Manufacturing
Nijat Mehdiyev
Peter Fettke
18
11
0
22 Sep 2020
Discovering Generative Models from Event Logs: Data-driven Simulation vs Deep Learning
Manuel Camargo
Marlon Dumas
Oscar González Rojas
12
25
0
08 Sep 2020
Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring
Nijat Mehdiyev
Peter Fettke
AI4TS
25
55
0
04 Sep 2020
An empirical investigation of different classifiers, encoding and ensemble schemes for next event prediction using business process event logs
Bayu Adhi Tama
M. Comuzzi
Jonghyeon Ko
37
11
0
24 Aug 2020
XNAP: Making LSTM-based Next Activity Predictions Explainable by Using LRP
Sven Weinzierl
Sandra Zilker
Jens Brunk
K. Revoredo
Martin Matzner
J. Becker
28
26
0
18 Aug 2020
A Technique for Determining Relevance Scores of Process Activities using Graph-based Neural Networks
M. Stierle
Sven Weinzierl
Maximilian Harl
Martin Matzner
13
16
0
07 Aug 2020
Encoder-Decoder Generative Adversarial Nets for Suffix Generation and Remaining Time Prediction of Business Process Models
Farbod Taymouri
M. Rosa
GAN
9
8
0
30 Jul 2020
From Robotic Process Automation to Intelligent Process Automation: Emerging Trends
Tathagata Chakraborti
Vatche Isahagian
Rania Y. Khalaf
Y. Khazaeni
Vinod Muthusamy
Sadhana Kumaravel
Merve Unuvar
AI4CE
30
43
0
27 Jul 2020
An empirical comparison of deep-neural-network architectures for next activity prediction using context-enriched process event logs
Sven Weinzierl
Sandra Zilker
Jens Brunk
Kate Revoredo
A. Nguyen
Martin Matzner
Jörg Becker
Björn Eskofier
22
19
0
03 May 2020
Predictive Business Process Monitoring via Generative Adversarial Nets: The Case of Next Event Prediction
Farbod Taymouri
M. Rosa
S. Erfani
Z. Bozorgi
I. Verenich
GAN
AAML
9
86
0
25 Mar 2020
Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics
Amir H. Mosavi
Pedram Ghamisi
Yaser Faghan
Puhong Duan
OffRL
27
152
0
21 Mar 2020
AI Trust in business processes: The need for process-aware explanations
Steve T. K. Jan
Vatche Isahagian
Vinod Muthusamy
9
23
0
21 Jan 2020
Exploring Interpretability for Predictive Process Analytics
Renuka Sindhgatta
Chun Ouyang
Catarina Moreira
10
2
0
22 Dec 2019
Forecasting remaining useful life: Interpretable deep learning approach via variational Bayesian inferences
Mathias Kraus
Stefan Feuerriegel
14
110
0
11 Jul 2019
Specification-Driven Predictive Business Process Monitoring
Ario Santoso
Michael Felderer
AI4TS
6
4
0
20 Apr 2019
Exploiting Event Log Event Attributes in RNN Based Prediction
Markku Hinkka
Teemu Lehto
Keijo Heljanko
17
28
0
15 Apr 2019
Decay Replay Mining to Predict Next Process Events
Julian Theis
H. Darabi
AI4TS
11
1
0
12 Mar 2019
BINet: Multi-perspective Business Process Anomaly Classification
Timo Nolle
Stefan Luettgen
Alexander Seeliger
M. Mühlhäuser
AI4TS
32
68
0
08 Feb 2019
An Interdisciplinary Comparison of Sequence Modeling Methods for Next-Element Prediction
Niek Tax
Irene Teinemaa
S. V. Zelst
17
60
0
31 Oct 2018
Classifying Process Instances Using Recurrent Neural Networks
Markku Hinkka
Teemu Lehto
Keijo Heljanko
Alexander Jung
16
35
0
16 Sep 2018
Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring
I. Verenich
Marlon Dumas
M. Rosa
F. Maggi
Irene Teinemaa
AI4TS
12
147
0
08 May 2018
Putting Question-Answering Systems into Practice: Transfer Learning for Efficient Domain Customization
Bernhard Kratzwald
Stefan Feuerriegel
36
236
0
19 Apr 2018
Incremental Predictive Process Monitoring: How to Deal with the Variability of Real Environments
Chiara Di Francescomarino
Chiara Ghidini
F. Maggi
Williams Rizzi
Cosimo Persia
9
6
0
11 Apr 2018
Predictive Process Monitoring Methods: Which One Suits Me Best?
Chiara Di Francescomarino
Chiara Ghidini
F. Maggi
Fredrik P. Milani
11
146
0
06 Apr 2018
Specification-Driven Multi-Perspective Predictive Business Process Monitoring (Extended Version)
Ario Santoso
8
6
0
02 Apr 2018
DeepProcess: Supporting business process execution using a MANN-based recommender system
Asjad M. Khan
Hung Le
Kien Do
T. Tran
A. Ghose
K. Dam
Renuka Sindhgatta
BDL
HAI
16
11
0
03 Feb 2018
Event-based Failure Prediction in Distributed Business Processes
M. Borkowski
W. Fdhila
Matteo Nardelli
Stefanie Rinderle-Ma
Stefan Schulte
9
48
0
22 Dec 2017
Temporal Stability in Predictive Process Monitoring
Irene Teinemaa
Marlon Dumas
A. Leontjeva
F. Maggi
9
55
0
12 Dec 2017
Decision support from financial disclosures with deep neural networks and transfer learning
Mathias Kraus
Stefan Feuerriegel
AIFin
38
261
0
11 Oct 2017
Structural Feature Selection for Event Logs
Markku Hinkka
Teemu Lehto
Keijo Heljanko
Alexander Jung
14
12
0
08 Oct 2017
XES Tensorflow - Process Prediction using the Tensorflow Deep-Learning Framework
Joerg Evermann
Jana-Rebecca Rehse
Peter Fettke
19
13
0
03 May 2017
Previous
1
2