Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.01988
Cited By
Local Group Invariant Representations via Orbit Embeddings
6 December 2016
Anant Raj
Abhishek Kumar
Youssef Mroueh
Tom Fletcher
Bernhard Schölkopf
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local Group Invariant Representations via Orbit Embeddings"
11 / 11 papers shown
Title
Regularising for invariance to data augmentation improves supervised learning
Aleksander Botev
Matthias Bauer
Soham De
37
14
0
07 Mar 2022
VolterraNet: A higher order convolutional network with group equivariance for homogeneous manifolds
Monami Banerjee
Rudrasis Chakraborty
Jose J. Bouza
B. Vemuri
36
11
0
05 Jun 2021
On the Benefits of Invariance in Neural Networks
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OOD
BDL
33
91
0
01 May 2020
Convex Representation Learning for Generalized Invariance in Semi-Inner-Product Space
Yingyi Ma
Vignesh Ganapathiraman
Yaoliang Yu
Xinhua Zhang
21
1
0
25 Apr 2020
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
36
83
0
16 Aug 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
56
266
0
24 Jun 2018
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
27
190
0
16 Mar 2018
Spherical CNNs
Taco S. Cohen
Mario Geiger
Jonas Köhler
Max Welling
80
894
0
30 Jan 2018
Max-Margin Invariant Features from Transformed Unlabeled Data
Dipan K. Pal
Ashwin A. Kannan
Gautam Arakalgud
Marios Savvides
18
8
0
24 Oct 2017
Structured adaptive and random spinners for fast machine learning computations
Mariusz Bojarski
A. Choromańska
K. Choromanski
Francois Fagan
Cédric Gouy-Pailler
Anne Morvan
Nourhan Sakr
Tamás Sarlós
Jamal Atif
35
35
0
19 Oct 2016
Learning from Conditional Distributions via Dual Embeddings
Bo Dai
Niao He
Yunpeng Pan
Byron Boots
Le Song
35
21
0
15 Jul 2016
1