ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01988
  4. Cited By
Local Group Invariant Representations via Orbit Embeddings

Local Group Invariant Representations via Orbit Embeddings

6 December 2016
Anant Raj
Abhishek Kumar
Youssef Mroueh
Tom Fletcher
Bernhard Schölkopf
ArXivPDFHTML

Papers citing "Local Group Invariant Representations via Orbit Embeddings"

11 / 11 papers shown
Title
Regularising for invariance to data augmentation improves supervised
  learning
Regularising for invariance to data augmentation improves supervised learning
Aleksander Botev
Matthias Bauer
Soham De
37
14
0
07 Mar 2022
VolterraNet: A higher order convolutional network with group
  equivariance for homogeneous manifolds
VolterraNet: A higher order convolutional network with group equivariance for homogeneous manifolds
Monami Banerjee
Rudrasis Chakraborty
Jose J. Bouza
B. Vemuri
36
11
0
05 Jun 2021
On the Benefits of Invariance in Neural Networks
On the Benefits of Invariance in Neural Networks
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OOD
BDL
33
91
0
01 May 2020
Convex Representation Learning for Generalized Invariance in
  Semi-Inner-Product Space
Convex Representation Learning for Generalized Invariance in Semi-Inner-Product Space
Yingyi Ma
Vignesh Ganapathiraman
Yaoliang Yu
Xinhua Zhang
21
1
0
25 Apr 2020
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
36
83
0
16 Aug 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional
  Neural Network
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
56
266
0
24 Jun 2018
A Kernel Theory of Modern Data Augmentation
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
27
190
0
16 Mar 2018
Spherical CNNs
Spherical CNNs
Taco S. Cohen
Mario Geiger
Jonas Köhler
Max Welling
80
894
0
30 Jan 2018
Max-Margin Invariant Features from Transformed Unlabeled Data
Max-Margin Invariant Features from Transformed Unlabeled Data
Dipan K. Pal
Ashwin A. Kannan
Gautam Arakalgud
Marios Savvides
16
8
0
24 Oct 2017
Structured adaptive and random spinners for fast machine learning
  computations
Structured adaptive and random spinners for fast machine learning computations
Mariusz Bojarski
A. Choromańska
K. Choromanski
Francois Fagan
Cédric Gouy-Pailler
Anne Morvan
Nourhan Sakr
Tamás Sarlós
Jamal Atif
35
35
0
19 Oct 2016
Learning from Conditional Distributions via Dual Embeddings
Learning from Conditional Distributions via Dual Embeddings
Bo Dai
Niao He
Yunpeng Pan
Byron Boots
Le Song
35
21
0
15 Jul 2016
1