ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.00796
  4. Cited By
Overcoming catastrophic forgetting in neural networks

Overcoming catastrophic forgetting in neural networks

2 December 2016
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
Andrei A. Rusu
Kieran Milan
John Quan
Tiago Ramalho
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
    CLL
ArXivPDFHTML

Papers citing "Overcoming catastrophic forgetting in neural networks"

17 / 3,717 papers shown
Title
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry
  and Semantics
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
126
3,085
0
19 May 2017
Incremental Learning Through Deep Adaptation
Incremental Learning Through Deep Adaptation
Amir Rosenfeld
John K. Tsotsos
CLL
24
276
0
11 May 2017
CORe50: a New Dataset and Benchmark for Continuous Object Recognition
CORe50: a New Dataset and Benchmark for Continuous Object Recognition
Vincenzo Lomonaco
Davide Maltoni
37
490
0
09 May 2017
Analyzing Knowledge Transfer in Deep Q-Networks for Autonomously
  Handling Multiple Intersections
Analyzing Knowledge Transfer in Deep Q-Networks for Autonomously Handling Multiple Intersections
David Isele
Akansel Cosgun
K. Fujimura
19
11
0
02 May 2017
A Strategy for an Uncompromising Incremental Learner
A Strategy for an Uncompromising Incremental Learner
Ragav Venkatesan
Hemanth Venkateswara
S. Panchanathan
Baoxin Li
CLL
40
41
0
02 May 2017
Born to Learn: the Inspiration, Progress, and Future of Evolved Plastic
  Artificial Neural Networks
Born to Learn: the Inspiration, Progress, and Future of Evolved Plastic Artificial Neural Networks
Andrea Soltoggio
Kenneth O. Stanley
S. Risi
AI4CE
47
137
0
30 Mar 2017
Overcoming Catastrophic Forgetting by Incremental Moment Matching
Overcoming Catastrophic Forgetting by Incremental Moment Matching
Sang-Woo Lee
Jin-Hwa Kim
Jaehyun Jun
Jung-Woo Ha
Byoung-Tak Zhang
CLL
30
670
0
24 Mar 2017
Continual Learning Through Synaptic Intelligence
Continual Learning Through Synaptic Intelligence
Friedemann Zenke
Ben Poole
Surya Ganguli
42
51
0
13 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
658
11,762
0
09 Mar 2017
Generative and Discriminative Text Classification with Recurrent Neural
  Networks
Generative and Discriminative Text Classification with Recurrent Neural Networks
Dani Yogatama
Chris Dyer
Wang Ling
Phil Blunsom
27
197
0
06 Mar 2017
Meta Networks
Meta Networks
Tsendsuren Munkhdalai
Hong-ye Yu
GNN
AI4CE
55
1,061
0
02 Mar 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
121
1,508
0
25 Jan 2017
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLL
OOD
63
3,694
0
23 Nov 2016
UberNet: Training a `Universal' Convolutional Neural Network for Low-,
  Mid-, and High-Level Vision using Diverse Datasets and Limited Memory
UberNet: Training a `Universal' Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory
Iasonas Kokkinos
SSeg
SSL
84
673
0
07 Sep 2016
BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for
  Task-Oriented Dialogue Systems
BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems
Zachary Chase Lipton
Xiujun Li
Jianfeng Gao
Lihong Li
Faisal Ahmed
Li Deng
40
6
0
17 Aug 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLL
OOD
SSL
154
4,338
0
29 Jun 2016
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
36
70
0
31 Dec 2015
Previous
123...737475