Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.07422
Cited By
Deep Learning Approximation for Stochastic Control Problems
2 November 2016
Jiequn Han
E. Weinan
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning Approximation for Stochastic Control Problems"
35 / 35 papers shown
Title
In-Context Operator Learning for Linear Propagator Models
Tingwei Meng
Moritz Voß
Nils Detering
Giulio Farolfi
Stanley Osher
Georg Menz
41
0
0
28 Jan 2025
An Efficient On-Policy Deep Learning Framework for Stochastic Optimal Control
Mengjian Hua
Matthieu Laurière
Eric Vanden-Eijnden
39
3
0
07 Oct 2024
Online Control-Informed Learning
Zihao Liang
Tianyu Zhou
Zehui Lu
Shaoshuai Mou
33
1
0
04 Oct 2024
Convergence analysis of controlled particle systems arising in deep learning: from finite to infinite sample size
Huafu Liao
Alpár R. Mészáros
Chenchen Mou
Chao Zhou
26
2
0
08 Apr 2024
Learning Free Terminal Time Optimal Closed-loop Control of Manipulators
Wei Hu
Yue Zhao
E. Weinan
Jiequn Han
Jihao Long
22
0
0
29 Nov 2023
Stochastic Delay Differential Games: Financial Modeling and Machine Learning Algorithms
R. Balkin
Héctor D. Ceniceros
Ruimeng Hu
21
2
0
12 Jul 2023
Neural Partial Differential Equations with Functional Convolution
Z. Wu
Xingzhe He
Yijun Li
Cheng Yang
Rui Liu
S. Xiong
Bo Zhu
23
1
0
10 Mar 2023
Langevin algorithms for Markovian Neural Networks and Deep Stochastic control
Pierre Bras
Gilles Pagès
30
3
0
22 Dec 2022
Deep learning for gradient flows using the Brezis-Ekeland principle
Laura Carini
Max Jensen
R. Nürnberg
21
0
0
28 Sep 2022
Finite Expression Method for Solving High-Dimensional Partial Differential Equations
Senwei Liang
Haizhao Yang
34
18
0
21 Jun 2022
Neural Network Optimal Feedback Control with Guaranteed Local Stability
Tenavi Nakamura-Zimmerer
Q. Gong
W. Kang
20
9
0
01 May 2022
On Parametric Optimal Execution and Machine Learning Surrogates
Tao Chen
M. Ludkovski
Moritz Voß
21
1
0
18 Apr 2022
Linear convergence of a policy gradient method for some finite horizon continuous time control problems
C. Reisinger
Wolfgang Stockinger
Yufei Zhang
16
5
0
22 Mar 2022
Convergence of a robust deep FBSDE method for stochastic control
Kristoffer Andersson
Adam Andersson
C. Oosterlee
34
19
0
18 Jan 2022
The Parametric Cost Function Approximation: A new approach for multistage stochastic programming
Warrren B Powell
Saeed Ghadimi
19
7
0
01 Jan 2022
Data-Driven Computational Methods for the Domain of Attraction and Zubov's Equation
W. Kang
Kai Sun
Liang Xu
20
13
0
29 Dec 2021
A novel control method for solving high-dimensional Hamiltonian systems through deep neural networks
Shaolin Ji
S. Peng
Ying Peng
Xichuan Zhang
19
1
0
04 Nov 2021
Performance of a Markovian neural network versus dynamic programming on a fishing control problem
Mathieu Laurière
Gilles Pagès
O. Pironneau
17
5
0
14 Sep 2021
Data-informed Deep Optimization
Lulu Zhang
Z. Xu
Yaoyu Zhang
AI4CE
35
3
0
17 Jul 2021
Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance
René Carmona
Mathieu Laurière
AI4CE
20
26
0
09 Jul 2021
Machine Learning and Computational Mathematics
Weinan E
PINN
AI4CE
32
61
0
23 Sep 2020
Convergence of Deep Fictitious Play for Stochastic Differential Games
Jiequn Han
Ruimeng Hu
Jihao Long
19
19
0
12 Aug 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Solving stochastic optimal control problem via stochastic maximum principle with deep learning method
Shaolin Ji
S. Peng
Ying Peng
Xichuan Zhang
24
13
0
05 Jul 2020
Machine Learning and Control Theory
A. Bensoussan
Yiqun Li
Dinh Phan Cao Nguyen
M. Tran
S. Yam
Xiang Zhou
AI4CE
32
12
0
10 Jun 2020
Machine Learning from a Continuous Viewpoint
E. Weinan
Chao Ma
Lei Wu
33
102
0
30 Dec 2019
Multi-scale Deep Neural Networks for Solving High Dimensional PDEs
Wei Cai
Zhi-Qin John Xu
AI4CE
19
38
0
25 Oct 2019
Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II -- The Finite Horizon Case
René Carmona
Mathieu Laurière
11
94
0
05 Aug 2019
Deep Forward-Backward SDEs for Min-max Control
Ziyi Wang
Keuntaek Lee
M. Pereira
Ioannis Exarchos
Evangelos A. Theodorou
19
14
0
11 Jun 2019
A neural network based policy iteration algorithm with global
H
2
H^2
H
2
-superlinear convergence for stochastic games on domains
Kazufumi Ito
C. Reisinger
Yufei Zhang
14
27
0
05 Jun 2019
Deep Fictitious Play for Stochastic Differential Games
Ruimeng Hu
25
29
0
22 Mar 2019
Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis
Côme Huré
H. Pham
Achref Bachouch
N. Langrené
13
64
0
11 Dec 2018
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
17
62
0
26 Sep 2018
Machine Learning for semi linear PDEs
Quentin Chan-Wai-Nam
Joseph Mikael
X. Warin
ODL
21
111
0
20 Sep 2018
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
Weinan E
Jiequn Han
Arnulf Jentzen
18
780
0
15 Jun 2017
1