ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.06972
  4. Cited By
Measuring Sample Quality with Diffusions

Measuring Sample Quality with Diffusions

21 November 2016
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
ArXivPDFHTML

Papers citing "Measuring Sample Quality with Diffusions"

25 / 25 papers shown
Title
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
48
14
0
26 Sep 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
31
25
0
20 Mar 2022
Bounding Wasserstein distance with couplings
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
17
8
0
06 Dec 2021
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
16
153
0
25 Jul 2021
Interpreting diffusion score matching using normalizing flow
Interpreting diffusion score matching using normalizing flow
Wenbo Gong
Yingzhen Li
DiffM
27
13
0
21 Jul 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
45
19
0
23 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on
  Kernel Stein Discrepancy Tests for Goodness-of-fit
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
32
4
0
23 Jun 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
G. Reinert
Yvik Swan
22
35
0
07 May 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
22
17
0
06 May 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
24
74
0
15 Apr 2021
Blindness of score-based methods to isolated components and mixing
  proportions
Blindness of score-based methods to isolated components and mixing proportions
Wenliang K. Li
Heishiro Kanagawa
15
34
0
23 Aug 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
32
27
0
25 Jan 2020
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
19
134
0
16 Jul 2019
Minimum Stein Discrepancy Estimators
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
30
90
0
19 Jun 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
19
47
0
23 May 2019
Stein Point Markov Chain Monte Carlo
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
30
56
0
09 May 2019
Random Feature Stein Discrepancies
Random Feature Stein Discrepancies
Jonathan H. Huggins
Lester W. Mackey
24
45
0
20 Jun 2018
Sobolev Descent
Sobolev Descent
Youssef Mroueh
Tom Sercu
Anant Raj
OT
16
1
0
30 May 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
19
32
0
26 Sep 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
36
293
0
12 Jul 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
25
101
0
16 Jun 2017
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
Quantifying the accuracy of approximate diffusions and Markov chains
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Y. Zou
49
29
0
20 May 2016
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
107
324
0
09 Feb 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1