ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.05763
  4. Cited By
Learning to reinforcement learn
v1v2v3 (latest)

Learning to reinforcement learn

17 November 2016
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
    OffRL
ArXiv (abs)PDFHTML

Papers citing "Learning to reinforcement learn"

34 / 584 papers shown
Title
Some Considerations on Learning to Explore via Meta-Reinforcement
  Learning
Some Considerations on Learning to Explore via Meta-Reinforcement Learning
Bradly C. Stadie
Ge Yang
Rein Houthooft
Xi Chen
Yan Duan
Yuhuai Wu
Pieter Abbeel
Ilya Sutskever
LRM
100
116
0
03 Mar 2018
Federated Meta-Learning with Fast Convergence and Efficient
  Communication
Federated Meta-Learning with Fast Convergence and Efficient Communication
Fei Chen
Mi Luo
Zhenhua Dong
Zhenguo Li
Xiuqiang He
FedML
83
398
0
22 Feb 2018
Meta-Reinforcement Learning of Structured Exploration Strategies
Meta-Reinforcement Learning of Structured Exploration Strategies
Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
OffRL
141
350
0
20 Feb 2018
Learning Data-Driven Objectives to Optimize Interactive Systems
Learning Data-Driven Objectives to Optimize Interactive Systems
Ziming Li
Julia Kiseleva
Alekh Agarwal
Maarten de Rijke
50
1
0
17 Feb 2018
Evolved Policy Gradients
Evolved Policy Gradients
Rein Houthooft
Richard Y. Chen
Phillip Isola
Bradly C. Stadie
Filip Wolski
Jonathan Ho
Pieter Abbeel
109
228
0
13 Feb 2018
Deep Meta-Learning: Learning to Learn in the Concept Space
Deep Meta-Learning: Learning to Learn in the Concept Space
Fengwei Zhou
Bin Wu
Zhenguo Li
SSL
81
123
0
10 Feb 2018
Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents
Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents
Joel Z Leibo
Cyprien de Masson dÁutume
Daniel Zoran
David Amos
Charlie Beattie
...
Simon Green
A. Gruslys
Shane Legg
Demis Hassabis
M. Botvinick
105
78
0
24 Jan 2018
Learning model-based strategies in simple environments with hierarchical
  q-networks
Learning model-based strategies in simple environments with hierarchical q-networks
Necati Alp Muyesser
Kyle Dunovan
Timothy D. Verstynen
33
1
0
20 Jan 2018
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace
Yoonho Lee
Seungjin Choi
66
27
0
17 Jan 2018
Modular Continual Learning in a Unified Visual Environment
Modular Continual Learning in a Unified Visual Environment
Kevin T. Feigelis
Blue Sheffer
Daniel L. K. Yamins
31
0
0
20 Nov 2017
Learning to select computations
Learning to select computations
Frederick Callaway
Sayan Gul
Paul M. Krueger
Thomas Griffiths
Falk Lieder
64
30
0
18 Nov 2017
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CEFedMLNAIAILaw
331
887
0
11 Nov 2017
Meta-Learning and Universality: Deep Representations and Gradient
  Descent can Approximate any Learning Algorithm
Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm
Chelsea Finn
Sergey Levine
SSL
144
223
0
31 Oct 2017
Meta Learning Shared Hierarchies
Meta Learning Shared Hierarchies
Kevin Frans
Jonathan Ho
Xi Chen
Pieter Abbeel
John Schulman
84
355
0
26 Oct 2017
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive
  Environments
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
Maruan Al-Shedivat
Trapit Bansal
Yuri Burda
Ilya Sutskever
Igor Mordatch
Pieter Abbeel
CLL
79
354
0
10 Oct 2017
A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
185
2,830
0
19 Aug 2017
General AI Challenge - Round One: Gradual Learning
General AI Challenge - Round One: Gradual Learning
Jan Feyereisl
Matej Nikl
Martin Poliak
Martin Stránský
M. Vlasak
CLLAI4CE
25
1
0
17 Aug 2017
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Zhenguo Li
Fengwei Zhou
Fei Chen
Hang Li
139
1,127
0
31 Jul 2017
Learning Transferable Architectures for Scalable Image Recognition
Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph
Vijay Vasudevan
Jonathon Shlens
Quoc V. Le
277
5,623
0
21 Jul 2017
Efficient Architecture Search by Network Transformation
Efficient Architecture Search by Network Transformation
Han Cai
Tianyao Chen
Weinan Zhang
Yong Yu
Jun Wang
OOD3DV
99
67
0
16 Jul 2017
A Simple Neural Attentive Meta-Learner
A Simple Neural Attentive Meta-Learner
Nikhil Mishra
Mostafa Rohaninejad
Xi Chen
Pieter Abbeel
OOD
109
200
0
11 Jul 2017
A Useful Motif for Flexible Task Learning in an Embodied Two-Dimensional
  Visual Environment
A Useful Motif for Flexible Task Learning in an Embodied Two-Dimensional Visual Environment
Kevin T. Feigelis
Daniel L. K. Yamins
36
0
0
22 Jun 2017
Structure Learning in Motor Control:A Deep Reinforcement Learning Model
Structure Learning in Motor Control:A Deep Reinforcement Learning Model
Ari Weinstein
M. Botvinick
49
14
0
21 Jun 2017
Feature Control as Intrinsic Motivation for Hierarchical Reinforcement
  Learning
Feature Control as Intrinsic Motivation for Hierarchical Reinforcement Learning
Nat Dilokthanakul
Christos Kaplanis
Nick Pawlowski
Murray Shanahan
87
92
0
18 May 2017
Deep Episodic Value Iteration for Model-based Meta-Reinforcement
  Learning
Deep Episodic Value Iteration for Model-based Meta-Reinforcement Learning
Steven Hansen
OffRLVLM
41
5
0
09 May 2017
One-Shot Imitation Learning
One-Shot Imitation Learning
Yan Duan
Marcin Andrychowicz
Bradly C. Stadie
Jonathan Ho
Jonas Schneider
Ilya Sutskever
Pieter Abbeel
Wojciech Zaremba
OffRL
99
689
0
21 Mar 2017
Learned Optimizers that Scale and Generalize
Learned Optimizers that Scale and Generalize
Olga Wichrowska
Niru Maheswaranathan
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Nando de Freitas
Jascha Narain Sohl-Dickstein
AI4CE
96
284
0
14 Mar 2017
Learning Gradient Descent: Better Generalization and Longer Horizons
Learning Gradient Descent: Better Generalization and Longer Horizons
Kaifeng Lyu
Shunhua Jiang
Jian Li
110
114
0
10 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
1.2K
12,023
0
09 Mar 2017
Neural Episodic Control
Neural Episodic Control
Alexander Pritzel
Benigno Uria
Sriram Srinivasan
A. Badia
Oriol Vinyals
Demis Hassabis
Daan Wierstra
Charles Blundell
OffRLBDL
115
347
0
06 Mar 2017
Reinforcement Learning Algorithm Selection
Reinforcement Learning Algorithm Selection
Romain Laroche
Raphael Feraud
OffRL
98
8
0
30 Jan 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRLVLM
352
1,551
0
25 Jan 2017
Artificial Intelligence Approaches To UCAV Autonomy
Artificial Intelligence Approaches To UCAV Autonomy
Amir Husain
B. Porter
26
1
0
24 Jan 2017
Learning an Optimization Algorithm through Human Design Iterations
Learning an Optimization Algorithm through Human Design Iterations
Thurston Sexton
Max Yi Ren
88
20
0
24 Aug 2016
Previous
123...101112