ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.04246
  4. Cited By
Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning

Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning

14 November 2016
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
ArXivPDFHTML

Papers citing "Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning"

11 / 11 papers shown
Title
Using Logic Programming and Kernel-Grouping for Improving
  Interpretability of Convolutional Neural Networks
Using Logic Programming and Kernel-Grouping for Improving Interpretability of Convolutional Neural Networks
Parth Padalkar
Gopal Gupta
34
3
0
19 Oct 2023
Demystifying Deep Neural Networks Through Interpretation: A Survey
Demystifying Deep Neural Networks Through Interpretation: A Survey
Giang Dao
Minwoo Lee
FaML
FAtt
22
1
0
13 Dec 2020
Training Interpretable Convolutional Neural Networks by Differentiating
  Class-specific Filters
Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters
Haoyun Liang
Zhihao Ouyang
Yuyuan Zeng
Hang Su
Zihao He
Shutao Xia
Jun Zhu
Bo Zhang
16
47
0
16 Jul 2020
Interpretable and Accurate Fine-grained Recognition via Region Grouping
Interpretable and Accurate Fine-grained Recognition via Region Grouping
Zixuan Huang
Yin Li
12
138
0
21 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
43
371
0
30 Apr 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
41
6,125
0
22 Oct 2019
Interpretable CNNs for Object Classification
Interpretable CNNs for Object Classification
Quanshi Zhang
Xin Eric Wang
Ying Nian Wu
Huilin Zhou
Song-Chun Zhu
18
54
0
08 Jan 2019
Mining Interpretable AOG Representations from Convolutional Networks via
  Active Question Answering
Mining Interpretable AOG Representations from Convolutional Networks via Active Question Answering
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
16
14
0
18 Dec 2018
Counterfactuals uncover the modular structure of deep generative models
Counterfactuals uncover the modular structure of deep generative models
M. Besserve
Arash Mehrjou
Rémy Sun
Bernhard Schölkopf
DRL
BDL
DiffM
19
107
0
08 Dec 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
40
1,842
0
31 May 2018
Visual Interpretability for Deep Learning: a Survey
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
17
810
0
02 Feb 2018
1