ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.01838
  4. Cited By
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys

Entropy-SGD: Biasing Gradient Descent Into Wide Valleys

6 November 2016
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
    ODL
ArXivPDFHTML

Papers citing "Entropy-SGD: Biasing Gradient Descent Into Wide Valleys"

14 / 164 papers shown
Title
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization
  properties of Entropy-SGD and data-dependent priors
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
30
144
0
26 Dec 2017
On Connecting Stochastic Gradient MCMC and Differential Privacy
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
41
38
0
25 Dec 2017
Convergent Block Coordinate Descent for Training Tikhonov Regularized
  Deep Neural Networks
Convergent Block Coordinate Descent for Training Tikhonov Regularized Deep Neural Networks
Ziming Zhang
M. Brand
26
70
0
20 Nov 2017
Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory
Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory
Ron Amit
Ron Meir
BDL
MLT
32
173
0
03 Nov 2017
Stochastic Backward Euler: An Implicit Gradient Descent Algorithm for
  $k$-means Clustering
Stochastic Backward Euler: An Implicit Gradient Descent Algorithm for kkk-means Clustering
Penghang Yin
Minh Pham
Adam M. Oberman
Stanley Osher
FedML
40
15
0
21 Oct 2017
Exploring Generalization in Deep Learning
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
68
1,235
0
27 Jun 2017
Proximal Backpropagation
Proximal Backpropagation
Thomas Frerix
Thomas Möllenhoff
Michael Möller
Daniel Cremers
23
31
0
14 Jun 2017
Deep Relaxation: partial differential equations for optimizing deep
  neural networks
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
27
153
0
17 Apr 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
  Networks with Many More Parameters than Training Data
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
50
799
0
31 Mar 2017
Sharp Minima Can Generalize For Deep Nets
Sharp Minima Can Generalize For Deep Nets
Laurent Dinh
Razvan Pascanu
Samy Bengio
Yoshua Bengio
ODL
46
755
0
15 Mar 2017
Data-Dependent Stability of Stochastic Gradient Descent
Data-Dependent Stability of Stochastic Gradient Descent
Ilja Kuzborskij
Christoph H. Lampert
MLT
9
165
0
05 Mar 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,266
0
09 Jun 2012
Previous
1234