Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.01236
Cited By
v1
v2 (latest)
Adversarial Machine Learning at Scale
4 November 2016
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adversarial Machine Learning at Scale"
50 / 1,610 papers shown
Title
Adversarial Robustness Curves
Christina Göpfert
Jan Philip Göpfert
Barbara Hammer
AAML
35
6
0
31 Jul 2019
Adversarial Test on Learnable Image Encryption
Maungmaung Aprilpyone
Warit Sirichotedumrong
Hitoshi Kiya
42
8
0
31 Jul 2019
Not All Adversarial Examples Require a Complex Defense: Identifying Over-optimized Adversarial Examples with IQR-based Logit Thresholding
Utku Ozbulak
Arnout Van Messem
W. D. Neve
AAML
34
1
0
30 Jul 2019
Are Odds Really Odd? Bypassing Statistical Detection of Adversarial Examples
Hossein Hosseini
Sreeram Kannan
Radha Poovendran
AAML
70
19
0
28 Jul 2019
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment
Di Jin
Zhijing Jin
Qiufeng Wang
Peter Szolovits
SILM
AAML
321
1,098
0
27 Jul 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
112
231
0
24 Jul 2019
Joint Adversarial Training: Incorporating both Spatial and Pixel Attacks
Haichao Zhang
Jianyu Wang
72
4
0
24 Jul 2019
Towards Adversarially Robust Object Detection
Haichao Zhang
Jianyu Wang
AAML
ObjD
139
131
0
24 Jul 2019
Understanding Adversarial Robustness Through Loss Landscape Geometries
Vinay Uday Prabhu
Dian Ang Yap
Joyce Xu
John Whaley
AAML
58
17
0
22 Jul 2019
Adversarial Security Attacks and Perturbations on Machine Learning and Deep Learning Methods
Arif Siddiqi
AAML
64
11
0
17 Jul 2019
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
Basel Alomair
OODD
318
1,487
0
16 Jul 2019
Latent Adversarial Defence with Boundary-guided Generation
Xiaowei Zhou
Ivor W. Tsang
Jie Yin
AAML
47
4
0
16 Jul 2019
Graph Interpolating Activation Improves Both Natural and Robust Accuracies in Data-Efficient Deep Learning
Bao Wang
Stanley J. Osher
AAML
AI4CE
77
10
0
16 Jul 2019
Unsupervised Adversarial Attacks on Deep Feature-based Retrieval with GAN
Guoping Zhao
Mingyu Zhang
Jiajun Liu
Ji-Rong Wen
AAML
GAN
65
25
0
12 Jul 2019
Why Blocking Targeted Adversarial Perturbations Impairs the Ability to Learn
Ziv Katzir
Yuval Elovici
AAML
20
3
0
11 Jul 2019
PhysGAN: Generating Physical-World-Resilient Adversarial Examples for Autonomous Driving
Zelun Kong
Junfeng Guo
Ang Li
Cong Liu
AAML
105
131
0
09 Jul 2019
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
129
308
0
04 Jul 2019
Fooling a Real Car with Adversarial Traffic Signs
N. Morgulis
Alexander Kreines
Shachar Mendelowitz
Yuval Weisglass
AAML
89
93
0
30 Jun 2019
Signed Laplacian Deep Learning with Adversarial Augmentation for Improved Mammography Diagnosis
Heyi Li
Dongdong Chen
W. Nailon
Mike E. Davies
Dave Laurenson
MedIm
150
15
0
30 Jun 2019
Training individually fair ML models with Sensitive Subspace Robustness
Mikhail Yurochkin
Amanda Bower
Yuekai Sun
FaML
OOD
88
120
0
28 Jun 2019
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OOD
SSL
90
955
0
28 Jun 2019
Learning to Cope with Adversarial Attacks
Xian Yeow Lee
Aaron J. Havens
Girish Chowdhary
Soumik Sarkar
AAML
73
5
0
28 Jun 2019
Using Intuition from Empirical Properties to Simplify Adversarial Training Defense
Guanxiong Liu
Issa M. Khalil
Abdallah Khreishah
AAML
37
2
0
27 Jun 2019
Adversarial Robustness via Label-Smoothing
Morgane Goibert
Elvis Dohmatob
AAML
124
18
0
27 Jun 2019
Defending Adversarial Attacks by Correcting logits
Yifeng Li
Lingxi Xie
Ya Zhang
Rui Zhang
Yanfeng Wang
Qi Tian
AAML
44
5
0
26 Jun 2019
Brain MR Image Segmentation in Small Dataset with Adversarial Defense and Task Reorganization
Xuhua Ren
Lichi Zhang
Qian Wang
Dinggang Shen
29
12
0
25 Jun 2019
A Game-Theoretic Approach to Adversarial Linear Support Vector Classification
Farhad Farokhi
AAML
52
3
0
24 Jun 2019
On Physical Adversarial Patches for Object Detection
Mark Lee
Zico Kolter
AAML
95
171
0
20 Jun 2019
Global Adversarial Attacks for Assessing Deep Learning Robustness
Hanbin Hu
Mitt Shah
Jianhua Z. Huang
Peng Li
AAML
80
4
0
19 Jun 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
Jason D. Lee
AAML
117
109
0
19 Jun 2019
The Attack Generator: A Systematic Approach Towards Constructing Adversarial Attacks
F. Assion
Peter Schlicht
Florens Greßner
W. Günther
Fabian Hüger
Nico M. Schmidt
Umair Rasheed
AAML
75
14
0
17 Jun 2019
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Arno Solin
Yoshua Bengio
AAML
74
100
0
16 Jun 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
109
351
0
14 Jun 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
186
462
0
12 Jun 2019
Subspace Attack: Exploiting Promising Subspaces for Query-Efficient Black-box Attacks
Ziang Yan
Yiwen Guo
Changshui Zhang
AAML
81
111
0
11 Jun 2019
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective
Kaidi Xu
Hongge Chen
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Mingyi Hong
Xue Lin
AAML
131
454
0
10 Jun 2019
Robustness Verification of Tree-based Models
Hongge Chen
Huan Zhang
Si Si
Yang Li
Duane S. Boning
Cho-Jui Hsieh
AAML
103
77
0
10 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
152
552
0
09 Jun 2019
Federated AI lets a team imagine together: Federated Learning of GANs
R. A
N. V
FedML
58
6
0
09 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
93
101
0
08 Jun 2019
Strategies to architect AI Safety: Defense to guard AI from Adversaries
R. A
N. V
AAML
32
0
0
08 Jun 2019
Efficient Project Gradient Descent for Ensemble Adversarial Attack
Fanyou Wu
R. Gazo
E. Haviarova
Bedrich Benes
AAML
33
5
0
07 Jun 2019
Understanding Adversarial Behavior of DNNs by Disentangling Non-Robust and Robust Components in Performance Metric
Yujun Shi
B. Liao
Guangyong Chen
Yun-Hai Liu
Ming-Ming Cheng
Jiashi Feng
AAML
20
2
0
06 Jun 2019
Adversarial Risk Bounds for Neural Networks through Sparsity based Compression
E. Balda
Arash Behboodi
Niklas Koep
R. Mathar
AAML
82
8
0
03 Jun 2019
Fast and Stable Interval Bounds Propagation for Training Verifiably Robust Models
P. Morawiecki
Przemysław Spurek
Marek Śmieja
Jacek Tabor
AAML
OOD
29
9
0
03 Jun 2019
Adversarial Examples for Edge Detection: They Exist, and They Transfer
Christian Cosgrove
Alan Yuille
AAML
GAN
51
12
0
02 Jun 2019
Enhancing Transformation-based Defenses using a Distribution Classifier
C. Kou
H. Lee
E. Chang
Teck Khim Ng
69
3
0
01 Jun 2019
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
97
335
0
31 May 2019
Bandlimiting Neural Networks Against Adversarial Attacks
Yuping Lin
A. KasraAhmadiK.
Hui Jiang
AAML
42
6
0
30 May 2019
Controlling Neural Level Sets
Matan Atzmon
Niv Haim
Lior Yariv
Ofer Israelov
Haggai Maron
Y. Lipman
AI4CE
54
121
0
28 May 2019
Previous
1
2
3
...
25
26
27
...
31
32
33
Next