ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.01236
  4. Cited By
Adversarial Machine Learning at Scale

Adversarial Machine Learning at Scale

4 November 2016
Alexey Kurakin
Ian Goodfellow
Samy Bengio
    AAML
ArXivPDFHTML

Papers citing "Adversarial Machine Learning at Scale"

50 / 530 papers shown
Title
A New Family of Neural Networks Provably Resistant to Adversarial
  Attacks
A New Family of Neural Networks Provably Resistant to Adversarial Attacks
Rakshit Agrawal
Luca de Alfaro
D. Helmbold
AAML
OOD
24
2
0
01 Feb 2019
Adversarial Metric Attack and Defense for Person Re-identification
Adversarial Metric Attack and Defense for Person Re-identification
S. Bai
Yingwei Li
Yuyin Zhou
Qizhu Li
Philip Torr
AAML
13
17
0
30 Jan 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
19
717
0
28 Jan 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
41
434
0
25 Jan 2019
Cross-Entropy Loss and Low-Rank Features Have Responsibility for
  Adversarial Examples
Cross-Entropy Loss and Low-Rank Features Have Responsibility for Adversarial Examples
Kamil Nar
Orhan Ocal
S. Shankar Sastry
Kannan Ramchandran
AAML
19
54
0
24 Jan 2019
Optimization Problems for Machine Learning: A Survey
Optimization Problems for Machine Learning: A Survey
Claudio Gambella
Bissan Ghaddar
Joe Naoum-Sawaya
AI4CE
30
178
0
16 Jan 2019
Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud
  Classifiers
Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud Classifiers
Daniel Liu
Ronald Yu
Hao Su
3DPC
34
165
0
10 Jan 2019
Image Super-Resolution as a Defense Against Adversarial Attacks
Image Super-Resolution as a Defense Against Adversarial Attacks
Aamir Mustafa
Salman H. Khan
Munawar Hayat
Jianbing Shen
Ling Shao
AAML
SupR
21
167
0
07 Jan 2019
Defense-VAE: A Fast and Accurate Defense against Adversarial Attacks
Defense-VAE: A Fast and Accurate Defense against Adversarial Attacks
Xiang Li
Shihao Ji
AAML
21
26
0
17 Dec 2018
Defending Against Universal Perturbations With Shared Adversarial
  Training
Defending Against Universal Perturbations With Shared Adversarial Training
Chaithanya Kumar Mummadi
Thomas Brox
J. H. Metzen
AAML
18
60
0
10 Dec 2018
Learning Transferable Adversarial Examples via Ghost Networks
Learning Transferable Adversarial Examples via Ghost Networks
Yingwei Li
S. Bai
Yuyin Zhou
Cihang Xie
Zhishuai Zhang
Alan Yuille
AAML
34
134
0
09 Dec 2018
AutoGAN: Robust Classifier Against Adversarial Attacks
AutoGAN: Robust Classifier Against Adversarial Attacks
Blerta Lindqvist
Shridatt Sugrim
R. Izmailov
AAML
23
7
0
08 Dec 2018
Interpretable Deep Learning under Fire
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
22
169
0
03 Dec 2018
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
29
64
0
08 Nov 2018
CAAD 2018: Iterative Ensemble Adversarial Attack
CAAD 2018: Iterative Ensemble Adversarial Attack
Jiayang Liu
Weiming Zhang
Nenghai Yu
AAML
22
4
0
07 Nov 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
M. Guizani
AAML
19
23
0
06 Nov 2018
Exploring Connections Between Active Learning and Model Extraction
Exploring Connections Between Active Learning and Model Extraction
Varun Chandrasekaran
Kamalika Chaudhuri
Irene Giacomelli
Shane Walker
Songbai Yan
MIACV
14
157
0
05 Nov 2018
Learning to Defend by Learning to Attack
Learning to Defend by Learning to Attack
Haoming Jiang
Zhehui Chen
Yuyang Shi
Bo Dai
T. Zhao
13
22
0
03 Nov 2018
Attack Graph Convolutional Networks by Adding Fake Nodes
Attack Graph Convolutional Networks by Adding Fake Nodes
Xiaoyun Wang
Minhao Cheng
Joe Eaton
Cho-Jui Hsieh
S. F. Wu
AAML
GNN
27
78
0
25 Oct 2018
Exploring Adversarial Examples in Malware Detection
Exploring Adversarial Examples in Malware Detection
Octavian Suciu
Scott E. Coull
Jeffrey Johns
AAML
23
188
0
18 Oct 2018
Efficient Two-Step Adversarial Defense for Deep Neural Networks
Efficient Two-Step Adversarial Defense for Deep Neural Networks
Ting-Jui Chang
Yukun He
Peng Li
AAML
25
11
0
08 Oct 2018
Combinatorial Attacks on Binarized Neural Networks
Combinatorial Attacks on Binarized Neural Networks
Elias Boutros Khalil
Amrita Gupta
B. Dilkina
AAML
46
40
0
08 Oct 2018
Security Analysis of Deep Neural Networks Operating in the Presence of
  Cache Side-Channel Attacks
Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks
Sanghyun Hong
Michael Davinroy
Yigitcan Kaya
S. Locke
Ian Rackow
Kevin Kulda
Dana Dachman-Soled
Tudor Dumitras
MIACV
25
90
0
08 Oct 2018
Improving the Generalization of Adversarial Training with Domain
  Adaptation
Improving the Generalization of Adversarial Training with Domain Adaptation
Chuanbiao Song
Kun He
Liwei Wang
J. Hopcroft
AAML
OOD
14
131
0
01 Oct 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural
  Network
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
21
171
0
01 Oct 2018
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep
  Convolutional Networks
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks
Kenneth T. Co
Luis Muñoz-González
Sixte de Maupeou
Emil C. Lupu
AAML
22
67
0
30 Sep 2018
On The Utility of Conditional Generation Based Mutual Information for
  Characterizing Adversarial Subspaces
On The Utility of Conditional Generation Based Mutual Information for Characterizing Adversarial Subspaces
Chia-Yi Hsu
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
30
1
0
24 Sep 2018
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural
  Networks against Adversarial Malware Samples
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
20
21
0
18 Sep 2018
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health
  Degree Prediction
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction
Jianguo Zhang
Ji Wang
Lifang He
Zhao Li
Philip S. Yu
21
31
0
11 Sep 2018
On the Structural Sensitivity of Deep Convolutional Networks to the
  Directions of Fourier Basis Functions
On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions
Yusuke Tsuzuku
Issei Sato
AAML
16
62
0
11 Sep 2018
Certified Adversarial Robustness with Additive Noise
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
28
341
0
10 Sep 2018
Controlling Over-generalization and its Effect on Adversarial Examples
  Generation and Detection
Controlling Over-generalization and its Effect on Adversarial Examples Generation and Detection
Mahdieh Abbasi
Arezoo Rajabi
A. Mozafari
R. Bobba
Christian Gagné
AAML
24
9
0
21 Aug 2018
Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically
  Differentiable Renderer
Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically Differentiable Renderer
Hsueh-Ti Derek Liu
Michael Tao
Chun-Liang Li
Derek Nowrouzezahrai
Alec Jacobson
AAML
33
13
0
08 Aug 2018
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the
  Robustness of 18 Deep Image Classification Models
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
D. Su
Huan Zhang
Hongge Chen
Jinfeng Yi
Pin-Yu Chen
Yupeng Gao
VLM
20
387
0
05 Aug 2018
Adversarial Examples in Deep Learning: Characterization and Divergence
Adversarial Examples in Deep Learning: Characterization and Divergence
Wenqi Wei
Ling Liu
Margaret Loper
Stacey Truex
Lei Yu
Mehmet Emre Gursoy
Yanzhao Wu
AAML
SILM
30
18
0
29 Jun 2018
Non-Negative Networks Against Adversarial Attacks
Non-Negative Networks Against Adversarial Attacks
William Fleshman
Edward Raff
Jared Sylvester
Steven Forsyth
Mark McLean
AAML
27
41
0
15 Jun 2018
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for
  Attacking Black-box Neural Networks
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks
Chun-Chen Tu
Pai-Shun Ting
Pin-Yu Chen
Sijia Liu
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Shin-Ming Cheng
MLAU
AAML
13
394
0
30 May 2018
Laplacian Networks: Bounding Indicator Function Smoothness for Neural
  Network Robustness
Laplacian Networks: Bounding Indicator Function Smoothness for Neural Network Robustness
Carlos Lassance
Vincent Gripon
Antonio Ortega
AAML
24
16
0
24 May 2018
Detecting Adversarial Samples for Deep Neural Networks through Mutation
  Testing
Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing
Jingyi Wang
Jun Sun
Peixin Zhang
Xinyu Wang
AAML
21
41
0
14 May 2018
AttriGuard: A Practical Defense Against Attribute Inference Attacks via
  Adversarial Machine Learning
AttriGuard: A Practical Defense Against Attribute Inference Attacks via Adversarial Machine Learning
Jinyuan Jia
Neil Zhenqiang Gong
AAML
13
160
0
13 May 2018
Curriculum Adversarial Training
Curriculum Adversarial Training
Qi-Zhi Cai
Min Du
Chang-rui Liu
D. Song
AAML
19
159
0
13 May 2018
Formal Security Analysis of Neural Networks using Symbolic Intervals
Formal Security Analysis of Neural Networks using Symbolic Intervals
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
20
472
0
28 Apr 2018
VectorDefense: Vectorization as a Defense to Adversarial Examples
VectorDefense: Vectorization as a Defense to Adversarial Examples
V. Kabilan
Brandon L. Morris
Anh Totti Nguyen
AAML
16
21
0
23 Apr 2018
Decoupled Networks
Decoupled Networks
Weiyang Liu
Ziqiang Liu
Zhiding Yu
Bo Dai
Rongmei Lin
Yisen Wang
James M. Rehg
Le Song
OOD
17
65
0
22 Apr 2018
ADef: an Iterative Algorithm to Construct Adversarial Deformations
ADef: an Iterative Algorithm to Construct Adversarial Deformations
Rima Alaifari
Giovanni S. Alberti
Tandri Gauksson
AAML
14
96
0
20 Apr 2018
Robustness via Deep Low-Rank Representations
Robustness via Deep Low-Rank Representations
Amartya Sanyal
Varun Kanade
Philip Torr
P. Dokania
OOD
21
16
0
19 Apr 2018
Fortified Networks: Improving the Robustness of Deep Networks by
  Modeling the Manifold of Hidden Representations
Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations
Alex Lamb
Jonathan Binas
Anirudh Goyal
Dmitriy Serdyuk
Sandeep Subramanian
Ioannis Mitliagkas
Yoshua Bengio
OOD
34
43
0
07 Apr 2018
Security Consideration For Deep Learning-Based Image Forensics
Security Consideration For Deep Learning-Based Image Forensics
Wei-Ye Zhao
Pengpeng Yang
R. Ni
Yao-Min Zhao
Haorui Wu
AAML
8
5
0
29 Mar 2018
Adversarial Defense based on Structure-to-Signal Autoencoders
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
26
31
0
21 Mar 2018
Adversarial Logit Pairing
Adversarial Logit Pairing
Harini Kannan
Alexey Kurakin
Ian Goodfellow
AAML
34
624
0
16 Mar 2018
Previous
123...10119
Next