Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.01236
Cited By
Adversarial Machine Learning at Scale
4 November 2016
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Machine Learning at Scale"
50 / 530 papers shown
Title
A New Family of Neural Networks Provably Resistant to Adversarial Attacks
Rakshit Agrawal
Luca de Alfaro
D. Helmbold
AAML
OOD
24
2
0
01 Feb 2019
Adversarial Metric Attack and Defense for Person Re-identification
S. Bai
Yingwei Li
Yuyin Zhou
Qizhu Li
Philip Torr
AAML
13
17
0
30 Jan 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
19
717
0
28 Jan 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
41
434
0
25 Jan 2019
Cross-Entropy Loss and Low-Rank Features Have Responsibility for Adversarial Examples
Kamil Nar
Orhan Ocal
S. Shankar Sastry
Kannan Ramchandran
AAML
19
54
0
24 Jan 2019
Optimization Problems for Machine Learning: A Survey
Claudio Gambella
Bissan Ghaddar
Joe Naoum-Sawaya
AI4CE
30
178
0
16 Jan 2019
Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud Classifiers
Daniel Liu
Ronald Yu
Hao Su
3DPC
34
165
0
10 Jan 2019
Image Super-Resolution as a Defense Against Adversarial Attacks
Aamir Mustafa
Salman H. Khan
Munawar Hayat
Jianbing Shen
Ling Shao
AAML
SupR
21
167
0
07 Jan 2019
Defense-VAE: A Fast and Accurate Defense against Adversarial Attacks
Xiang Li
Shihao Ji
AAML
21
26
0
17 Dec 2018
Defending Against Universal Perturbations With Shared Adversarial Training
Chaithanya Kumar Mummadi
Thomas Brox
J. H. Metzen
AAML
18
60
0
10 Dec 2018
Learning Transferable Adversarial Examples via Ghost Networks
Yingwei Li
S. Bai
Yuyin Zhou
Cihang Xie
Zhishuai Zhang
Alan Yuille
AAML
34
134
0
09 Dec 2018
AutoGAN: Robust Classifier Against Adversarial Attacks
Blerta Lindqvist
Shridatt Sugrim
R. Izmailov
AAML
23
7
0
08 Dec 2018
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
22
169
0
03 Dec 2018
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
29
64
0
08 Nov 2018
CAAD 2018: Iterative Ensemble Adversarial Attack
Jiayang Liu
Weiming Zhang
Nenghai Yu
AAML
22
4
0
07 Nov 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
M. Guizani
AAML
19
23
0
06 Nov 2018
Exploring Connections Between Active Learning and Model Extraction
Varun Chandrasekaran
Kamalika Chaudhuri
Irene Giacomelli
Shane Walker
Songbai Yan
MIACV
14
157
0
05 Nov 2018
Learning to Defend by Learning to Attack
Haoming Jiang
Zhehui Chen
Yuyang Shi
Bo Dai
T. Zhao
13
22
0
03 Nov 2018
Attack Graph Convolutional Networks by Adding Fake Nodes
Xiaoyun Wang
Minhao Cheng
Joe Eaton
Cho-Jui Hsieh
S. F. Wu
AAML
GNN
27
78
0
25 Oct 2018
Exploring Adversarial Examples in Malware Detection
Octavian Suciu
Scott E. Coull
Jeffrey Johns
AAML
23
188
0
18 Oct 2018
Efficient Two-Step Adversarial Defense for Deep Neural Networks
Ting-Jui Chang
Yukun He
Peng Li
AAML
25
11
0
08 Oct 2018
Combinatorial Attacks on Binarized Neural Networks
Elias Boutros Khalil
Amrita Gupta
B. Dilkina
AAML
46
40
0
08 Oct 2018
Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks
Sanghyun Hong
Michael Davinroy
Yigitcan Kaya
S. Locke
Ian Rackow
Kevin Kulda
Dana Dachman-Soled
Tudor Dumitras
MIACV
25
90
0
08 Oct 2018
Improving the Generalization of Adversarial Training with Domain Adaptation
Chuanbiao Song
Kun He
Liwei Wang
J. Hopcroft
AAML
OOD
14
131
0
01 Oct 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
21
171
0
01 Oct 2018
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks
Kenneth T. Co
Luis Muñoz-González
Sixte de Maupeou
Emil C. Lupu
AAML
22
67
0
30 Sep 2018
On The Utility of Conditional Generation Based Mutual Information for Characterizing Adversarial Subspaces
Chia-Yi Hsu
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
30
1
0
24 Sep 2018
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
20
21
0
18 Sep 2018
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction
Jianguo Zhang
Ji Wang
Lifang He
Zhao Li
Philip S. Yu
21
31
0
11 Sep 2018
On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions
Yusuke Tsuzuku
Issei Sato
AAML
16
62
0
11 Sep 2018
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
28
341
0
10 Sep 2018
Controlling Over-generalization and its Effect on Adversarial Examples Generation and Detection
Mahdieh Abbasi
Arezoo Rajabi
A. Mozafari
R. Bobba
Christian Gagné
AAML
24
9
0
21 Aug 2018
Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically Differentiable Renderer
Hsueh-Ti Derek Liu
Michael Tao
Chun-Liang Li
Derek Nowrouzezahrai
Alec Jacobson
AAML
33
13
0
08 Aug 2018
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
D. Su
Huan Zhang
Hongge Chen
Jinfeng Yi
Pin-Yu Chen
Yupeng Gao
VLM
20
387
0
05 Aug 2018
Adversarial Examples in Deep Learning: Characterization and Divergence
Wenqi Wei
Ling Liu
Margaret Loper
Stacey Truex
Lei Yu
Mehmet Emre Gursoy
Yanzhao Wu
AAML
SILM
30
18
0
29 Jun 2018
Non-Negative Networks Against Adversarial Attacks
William Fleshman
Edward Raff
Jared Sylvester
Steven Forsyth
Mark McLean
AAML
27
41
0
15 Jun 2018
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks
Chun-Chen Tu
Pai-Shun Ting
Pin-Yu Chen
Sijia Liu
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Shin-Ming Cheng
MLAU
AAML
13
394
0
30 May 2018
Laplacian Networks: Bounding Indicator Function Smoothness for Neural Network Robustness
Carlos Lassance
Vincent Gripon
Antonio Ortega
AAML
24
16
0
24 May 2018
Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing
Jingyi Wang
Jun Sun
Peixin Zhang
Xinyu Wang
AAML
21
41
0
14 May 2018
AttriGuard: A Practical Defense Against Attribute Inference Attacks via Adversarial Machine Learning
Jinyuan Jia
Neil Zhenqiang Gong
AAML
13
160
0
13 May 2018
Curriculum Adversarial Training
Qi-Zhi Cai
Min Du
Chang-rui Liu
D. Song
AAML
19
159
0
13 May 2018
Formal Security Analysis of Neural Networks using Symbolic Intervals
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
20
472
0
28 Apr 2018
VectorDefense: Vectorization as a Defense to Adversarial Examples
V. Kabilan
Brandon L. Morris
Anh Totti Nguyen
AAML
16
21
0
23 Apr 2018
Decoupled Networks
Weiyang Liu
Ziqiang Liu
Zhiding Yu
Bo Dai
Rongmei Lin
Yisen Wang
James M. Rehg
Le Song
OOD
17
65
0
22 Apr 2018
ADef: an Iterative Algorithm to Construct Adversarial Deformations
Rima Alaifari
Giovanni S. Alberti
Tandri Gauksson
AAML
14
96
0
20 Apr 2018
Robustness via Deep Low-Rank Representations
Amartya Sanyal
Varun Kanade
Philip Torr
P. Dokania
OOD
21
16
0
19 Apr 2018
Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations
Alex Lamb
Jonathan Binas
Anirudh Goyal
Dmitriy Serdyuk
Sandeep Subramanian
Ioannis Mitliagkas
Yoshua Bengio
OOD
34
43
0
07 Apr 2018
Security Consideration For Deep Learning-Based Image Forensics
Wei-Ye Zhao
Pengpeng Yang
R. Ni
Yao-Min Zhao
Haorui Wu
AAML
8
5
0
29 Mar 2018
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
26
31
0
21 Mar 2018
Adversarial Logit Pairing
Harini Kannan
Alexey Kurakin
Ian Goodfellow
AAML
34
624
0
16 Mar 2018
Previous
1
2
3
...
10
11
9
Next