Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.00740
Cited By
v1
v2
v3
v4
v5 (latest)
Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review
2 November 2016
T. Poggio
H. Mhaskar
Lorenzo Rosasco
Brando Miranda
Q. Liao
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review"
50 / 238 papers shown
Title
Uncertainty Quantification for Sparse Deep Learning
Yuexi Wang
Veronika Rockova
BDL
UQCV
99
31
0
26 Feb 2020
Approximation Bounds for Random Neural Networks and Reservoir Systems
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
94
67
0
14 Feb 2020
Translating Diffusion, Wavelets, and Regularisation into Residual Networks
Tobias Alt
Joachim Weickert
Pascal Peter
DiffM
52
8
0
07 Feb 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
147
248
0
09 Jan 2020
Analysis of Deep Neural Networks with Quasi-optimal polynomial approximation rates
Joseph Daws
Clayton Webster
74
8
0
04 Dec 2019
Stationary Points of Shallow Neural Networks with Quadratic Activation Function
D. Gamarnik
Eren C. Kizildag
Ilias Zadik
43
14
0
03 Dec 2019
ChebNet: Efficient and Stable Constructions of Deep Neural Networks with Rectified Power Units via Chebyshev Approximations
Shanshan Tang
Bo Li
Haijun Yu
31
11
0
07 Nov 2019
Stochastic Feedforward Neural Networks: Universal Approximation
Thomas Merkh
Guido Montúfar
43
8
0
22 Oct 2019
Neural network integral representations with the ReLU activation function
Armenak Petrosyan
Anton Dereventsov
Clayton Webster
54
22
0
07 Oct 2019
Deep Model Reference Adaptive Control
Girish Joshi
Girish Chowdhary
BDL
AI4CE
64
59
0
18 Sep 2019
Optimal Function Approximation with Relu Neural Networks
Bo Liu
Yi Liang
57
33
0
09 Sep 2019
PowerNet: Efficient Representations of Polynomials and Smooth Functions by Deep Neural Networks with Rectified Power Units
Bo Li
Shanshan Tang
Haijun Yu
41
20
0
09 Sep 2019
Dimension independent bounds for general shallow networks
H. Mhaskar
106
22
0
26 Aug 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
126
165
0
25 Aug 2019
Deep ReLU network approximation of functions on a manifold
Johannes Schmidt-Hieber
108
95
0
02 Aug 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
101
1,554
0
10 Jul 2019
Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting
Shiyang Li
Xiaoyong Jin
Yao Xuan
Xiyou Zhou
Wenhu Chen
Yu Wang
Xifeng Yan
AI4TS
134
1,449
0
29 Jun 2019
Error bounds for deep ReLU networks using the Kolmogorov--Arnold superposition theorem
Hadrien Montanelli
Haizhao Yang
70
92
0
27 Jun 2019
The phase diagram of approximation rates for deep neural networks
Dmitry Yarotsky
Anton Zhevnerchuk
88
122
0
22 Jun 2019
Meta-learning Pseudo-differential Operators with Deep Neural Networks
Jordi Feliu-Fabà
Yuwei Fan
Lexing Ying
64
40
0
16 Jun 2019
Bayesian Nonparametric Federated Learning of Neural Networks
Mikhail Yurochkin
Mayank Agarwal
S. Ghosh
Kristjan Greenewald
T. Hoang
Y. Khazaeni
FedML
145
732
0
28 May 2019
Expression of Fractals Through Neural Network Functions
Nadav Dym
B. Sober
Ingrid Daubechies
76
15
0
27 May 2019
Doctor of Crosswise: Reducing Over-parametrization in Neural Networks
J. Curtò
I. Zarza
Kris Kitani
Irwin King
Michael R. Lyu
MedIm
16
0
0
24 May 2019
Nonlinear Approximation and (Deep) ReLU Networks
Ingrid Daubechies
Ronald A. DeVore
S. Foucart
Boris Hanin
G. Petrova
110
146
0
05 May 2019
A neural network-based framework for financial model calibration
Shuaiqiang Liu
Anastasia Borovykh
L. Grzelak
C. Oosterlee
82
103
0
23 Apr 2019
Depth Separations in Neural Networks: What is Actually Being Separated?
Itay Safran
Ronen Eldan
Ohad Shamir
MDE
65
36
0
15 Apr 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
206
135
0
10 Apr 2019
Information Bottleneck and its Applications in Deep Learning
Hassan Hafez-Kolahi
S. Kasaei
66
19
0
07 Apr 2019
On functions computed on trees
Roozbeh Farhoodi
Khashayar Filom
I. Jones
Konrad Paul Kording
PINN
21
5
0
04 Apr 2019
A Theoretical Analysis of Deep Neural Networks and Parametric PDEs
Gitta Kutyniok
P. Petersen
Mones Raslan
R. Schneider
102
198
0
31 Mar 2019
Sparse Learning for Variable Selection with Structures and Nonlinearities
Magda Gregorova
65
1
0
26 Mar 2019
Data Augmentation for Bayesian Deep Learning
YueXing Wang
Nicholas G. Polson
Vadim Sokolov
UQCV
BDL
88
5
0
22 Mar 2019
Adaptive Genomic Evolution of Neural Network Topologies (AGENT) for State-to-Action Mapping in Autonomous Agents
A. Behjat
Sharat Chidambaran
Souma Chowdhury
48
14
0
17 Mar 2019
Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems
C. Reisinger
Yufei Zhang
55
70
0
15 Mar 2019
Is Deeper Better only when Shallow is Good?
Eran Malach
Shai Shalev-Shwartz
79
45
0
08 Mar 2019
Limiting Network Size within Finite Bounds for Optimization
Linu Pinto
Sasi Gopalan
41
2
0
07 Mar 2019
A lattice-based approach to the expressivity of deep ReLU neural networks
V. Corlay
J. Boutros
P. Ciblat
L. Brunel
58
4
0
28 Feb 2019
Complexity of Linear Regions in Deep Networks
Boris Hanin
David Rolnick
78
234
0
25 Jan 2019
When Can Neural Networks Learn Connected Decision Regions?
Trung Le
Dinh Q. Phung
MLT
57
1
0
25 Jan 2019
Training Neural Networks as Learning Data-adaptive Kernels: Provable Representation and Approximation Benefits
Xialiang Dou
Tengyuan Liang
MLT
83
42
0
21 Jan 2019
Realizing data features by deep nets
Zheng-Chu Guo
Lei Shi
Shao-Bo Lin
44
20
0
01 Jan 2019
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Henning Petzka
C. Sminchisescu
88
10
0
16 Dec 2018
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network
Zichao Long
Yiping Lu
Bin Dong
AI4CE
89
553
0
30 Nov 2018
Deep learning for pedestrians: backpropagation in CNNs
L. Boué
3DV
PINN
39
4
0
29 Nov 2018
Data Driven Governing Equations Approximation Using Deep Neural Networks
Tong Qin
Kailiang Wu
D. Xiu
PINN
95
275
0
13 Nov 2018
Biologically-plausible learning algorithms can scale to large datasets
Y. Chitour
Honglin Chen
Zhenyu Liao
T. Poggio
97
76
0
08 Nov 2018
Depth with Nonlinearity Creates No Bad Local Minima in ResNets
Kenji Kawaguchi
Yoshua Bengio
ODL
104
64
0
21 Oct 2018
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
194
144
0
15 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
125
310
0
11 Oct 2018
Towards WARSHIP: Combining Components of Brain-Inspired Computing of RSH for Image Super Resolution
Wendi Xu
Ming Zhang
39
1
0
03 Oct 2018
Previous
1
2
3
4
5
Next