Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.00740
Cited By
v1
v2
v3
v4
v5 (latest)
Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review
2 November 2016
T. Poggio
H. Mhaskar
Lorenzo Rosasco
Brando Miranda
Q. Liao
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review"
50 / 238 papers shown
Title
Superposed Parameterised Quantum Circuits
Viktoria Patapovich
Mo Kordzanganeh
A. Melnikov
23
0
0
10 Jun 2025
Neural Tangent Kernel Analysis to Probe Convergence in Physics-informed Neural Solvers: PIKANs vs. PINNs
Salah A Faroughi
Farinaz Mostajeran
15
0
0
09 Jun 2025
Emergence of Structure in Ensembles of Random Neural Networks
Luca Muscarnera
Luigi Loreti
Giovanni Todeschini
Alessio Fumagalli
Francesco Regazzoni
63
0
0
15 May 2025
Is the end of Insight in Sight ?
J. Tucny
M. Durve
S. Succi
115
0
0
07 May 2025
Information Filtering Networks: Theoretical Foundations, Generative Methodologies, and Real-World Applications
Tomaso Aste
GNN
61
0
0
02 May 2025
Erzeugunsgrad, VC-Dimension and Neural Networks with rational activation function
Luis Miguel Pardo
Daniel Sebastián
45
0
0
15 Apr 2025
F-INR: Functional Tensor Decomposition for Implicit Neural Representations
Sai Karthikeya Vemuri
Tim Buchner
Joachim Denzler
AI4CE
87
2
0
27 Mar 2025
Approximation properties of neural ODEs
Arturo De Marinis
Davide Murari
E. Celledoni
Nicola Guglielmi
B. Owren
Francesco Tudisco
78
1
0
19 Mar 2025
Curse of Dimensionality in Neural Network Optimization
Sanghoon Na
Haizhao Yang
87
0
0
07 Feb 2025
Variational Bayesian Adaptive Learning of Deep Latent Variables for Acoustic Knowledge Transfer
Hu Hu
Sabato Marco Siniscalchi
Chao-Han Huck Yang
Chin-Hui Lee
123
0
0
28 Jan 2025
Network Dynamics-Based Framework for Understanding Deep Neural Networks
Yuchen Lin
Yong Zhang
Sihan Feng
Hong Zhao
99
1
0
05 Jan 2025
Weighted Sobolev Approximation Rates for Neural Networks on Unbounded Domains
Ahmed Abdeljawad
Thomas Dittrich
55
0
0
06 Nov 2024
Probing the Latent Hierarchical Structure of Data via Diffusion Models
Antonio Sclocchi
Alessandro Favero
Noam Itzhak Levi
Matthieu Wyart
DiffM
121
5
0
17 Oct 2024
Highly Adaptive Ridge
Alejandro Schuler
Alexander Hagemeister
Mark van der Laan
236
0
0
03 Oct 2024
Nonuniform random feature models using derivative information
Konstantin Pieper
Zezhong Zhang
Guannan Zhang
61
2
0
03 Oct 2024
Towards Narrowing the Generalization Gap in Deep Boolean Networks
Youngsung Kim
NAI
AI4CE
69
0
0
06 Sep 2024
Two-stage initial-value iterative physics-informed neural networks for simulating solitary waves of nonlinear wave equations
Jin Song
Ming Zhong
George Karniadakis
Zhenya Yan
PINN
74
14
0
02 Sep 2024
Solving Oscillator Ordinary Differential Equations via Soft-constrained Physics-informed Neural Network with Small Data
Kai-liang Lu
Yu-meng Su
Zhuo Bi
Cheng Qiu
Wen-jun Zhang
PINN
63
0
0
19 Aug 2024
A Survey on Universal Approximation Theorems
Midhun T. Augustine
131
6
0
17 Jul 2024
Contribution Evaluation of Heterogeneous Participants in Federated Learning via Prototypical Representations
Qi Guo
Minghao Yao
Zhen Tian
Saiyu Qi
Yong Qi
Yun Lin
Jin Song Dong
58
1
0
02 Jul 2024
Newton Informed Neural Operator for Computing Multiple Solutions of Nonlinear Partials Differential Equations
Wenrui Hao
Xinliang Liu
Yahong Yang
69
4
0
23 May 2024
U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
Song Mei
3DV
AI4CE
DiffM
81
13
0
29 Apr 2024
How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
Umberto M. Tomasini
Matthieu Wyart
BDL
106
7
0
16 Apr 2024
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
61
4
0
04 Apr 2024
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
59
2
0
04 Mar 2024
A Phase Transition in Diffusion Models Reveals the Hierarchical Nature of Data
Antonio Sclocchi
Alessandro Favero
Matthieu Wyart
DiffM
115
37
0
26 Feb 2024
Approximation of relation functions and attention mechanisms
Awni Altabaa
John Lafferty
75
7
0
13 Feb 2024
Depth Separations in Neural Networks: Separating the Dimension from the Accuracy
Itay Safran
Daniel Reichman
Paul Valiant
107
0
0
11 Feb 2024
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement
Holger Boche
Adalbert Fono
Gitta Kutyniok
FaML
103
4
0
18 Jan 2024
Modelling Species Distributions with Deep Learning to Predict Plant Extinction Risk and Assess Climate Change Impacts
Joaquim Estopinan
P. Bonnet
Maximilien Servajean
Franccois Munoz
Alexis Joly
26
3
0
10 Jan 2024
Expressivity and Approximation Properties of Deep Neural Networks with ReLU
k
^k
k
Activation
Juncai He
Tong Mao
Jinchao Xu
77
4
0
27 Dec 2023
Optimal Deep Neural Network Approximation for Korobov Functions with respect to Sobolev Norms
Yahong Yang
Yulong Lu
66
3
0
08 Nov 2023
Identifying Interpretable Visual Features in Artificial and Biological Neural Systems
David A. Klindt
Sophia Sanborn
Francisco Acosta
Frédéric Poitevin
Nina Miolane
MILM
FAtt
105
7
0
17 Oct 2023
Time integration schemes based on neural networks for solving partial differential equations on coarse grids
Xinxin Yan
Zhideng Zhou
Xiaohan Cheng
Xiaolei Yang
AI4TS
AI4CE
56
0
0
16 Oct 2023
Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Burgers Equation
Yuesheng Xu
Taishan Zeng
AI4CE
52
4
0
14 Sep 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
89
1
0
13 Sep 2023
Neural Network Layer Matrix Decomposition reveals Latent Manifold Encoding and Memory Capacity
Ng Shyh‐Chang
A-Li Luo
Bo Qiu
17
0
0
12 Sep 2023
Approximation Results for Gradient Descent trained Neural Networks
G. Welper
68
1
0
09 Sep 2023
Solving Forward and Inverse Problems of Contact Mechanics using Physics-Informed Neural Networks
T. Şahin
M. Danwitz
A. Popp
PINN
75
25
0
24 Aug 2023
How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model
Francesco Cagnetta
Leonardo Petrini
Umberto M. Tomasini
Alessandro Favero
Matthieu Wyart
BDL
118
27
0
05 Jul 2023
Uniform Convergence of Deep Neural Networks with Lipschitz Continuous Activation Functions and Variable Widths
Yuesheng Xu
Haizhang Zhang
132
3
0
02 Jun 2023
Deep Stochastic Mechanics
Elena Orlova
Aleksei Ustimenko
Ruoxi Jiang
Peter Y. Lu
Rebecca Willett
DiffM
85
0
0
31 May 2023
Theoretical Analysis of Inductive Biases in Deep Convolutional Networks
Zihao Wang
Lei Wu
82
22
0
15 May 2023
Successive Affine Learning for Deep Neural Networks
Yuesheng Xu
54
2
0
13 May 2023
Foundations of Spatial Perception for Robotics: Hierarchical Representations and Real-time Systems
Nathan Hughes
Yun Chang
Siyi Hu
Rajat Talak
Rumaisa Abdulhai
Jared Strader
Luca Carlone
65
54
0
11 May 2023
A Neural Network Transformer Model for Composite Microstructure Homogenization
Emil Pitz
K. Pochiraju
AI4CE
60
10
0
16 Apr 2023
Deep neural network approximation of composite functions without the curse of dimensionality
Adrian Riekert
53
0
0
12 Apr 2023
Locality-constrained autoregressive cum conditional normalizing flow for lattice field theory simulations
R. DineshP.
AI4CE
57
0
0
04 Apr 2023
Depth Separation with Multilayer Mean-Field Networks
Y. Ren
Mo Zhou
Rong Ge
OOD
79
3
0
03 Apr 2023
Beyond Multilayer Perceptrons: Investigating Complex Topologies in Neural Networks
T. Boccato
Matteo Ferrante
A. Duggento
N. Toschi
58
3
0
31 Mar 2023
1
2
3
4
5
Next