Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.09072
Cited By
Orthogonal Random Features
28 October 2016
Felix X. Yu
A. Suresh
K. Choromanski
D. Holtmann-Rice
Sanjiv Kumar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Orthogonal Random Features"
34 / 34 papers shown
Title
ProKeR: A Kernel Perspective on Few-Shot Adaptation of Large Vision-Language Models
Yassir Bendou
Amine Ouasfi
Vincent Gripon
A. Boukhayma
VLM
51
0
0
19 Jan 2025
Fast Summation of Radial Kernels via QMC Slicing
Johannes Hertrich
Tim Jahn
Michael Quellmalz
26
5
0
02 Oct 2024
Scalable Neural Network Kernels
Arijit Sehanobish
Krzysztof Choromanski
Yunfan Zhao
Kumar Avinava Dubey
Valerii Likhosherstov
38
4
0
20 Oct 2023
Improved Regret Bounds for Online Kernel Selection under Bandit Feedback
Junfan Li
Shizhong Liao
17
1
0
09 Mar 2023
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
47
19
0
23 Oct 2022
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
43
189
0
06 Jul 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
24
48
0
01 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
27
18
0
30 Apr 2022
Local Random Feature Approximations of the Gaussian Kernel
Jonas Wacker
Maurizio Filippone
22
3
0
12 Apr 2022
A Call for Clarity in Beam Search: How It Works and When It Stops
Jungo Kasai
Keisuke Sakaguchi
Ronan Le Bras
Dragomir R. Radev
Yejin Choi
Noah A. Smith
26
6
0
11 Apr 2022
Monarch: Expressive Structured Matrices for Efficient and Accurate Training
Tri Dao
Beidi Chen
N. Sohoni
Arjun D Desai
Michael Poli
Jessica Grogan
Alexander Liu
Aniruddh Rao
Atri Rudra
Christopher Ré
22
87
0
01 Apr 2022
Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation
Chao Chen
Haoyu Geng
Nianzu Yang
Junchi Yan
Daiyue Xue
Jianping Yu
Xiaokang Yang
HAI
AI4TS
27
11
0
30 Mar 2022
Linearizing Transformer with Key-Value Memory
Yizhe Zhang
Deng Cai
20
5
0
23 Mar 2022
Uniform Approximations for Randomized Hadamard Transforms with Applications
Yeshwanth Cherapanamjeri
Jelani Nelson
38
11
0
03 Mar 2022
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
43
45
0
19 Aug 2021
Towards Unbiased Random Features with Lower Variance For Stationary Indefinite Kernels
Qin Luo
Kun Fang
Jie-jin Yang
Xiaolin Huang
13
1
0
13 Apr 2021
Denoising Score Matching with Random Fourier Features
Olga Tsymboi
Yermek Kapushev
Evgeny Burnaev
Ivan V. Oseledets
31
1
0
13 Jan 2021
Rethinking Attention with Performers
K. Choromanski
Valerii Likhosherstov
David Dohan
Xingyou Song
Andreea Gane
...
Afroz Mohiuddin
Lukasz Kaiser
David Belanger
Lucy J. Colwell
Adrian Weller
25
1,521
0
30 Sep 2020
Probabilistic Neighbourhood Component Analysis: Sample Efficient Uncertainty Estimation in Deep Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
UQCV
BDL
37
6
0
18 Jul 2020
Learning to Learn Kernels with Variational Random Features
Xiantong Zhen
Hao Sun
Yingjun Du
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
DRL
27
34
0
11 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
31
82
0
19 Feb 2020
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
15
20
0
28 Jan 2020
Graph Random Neural Features for Distance-Preserving Graph Representations
Daniele Zambon
Cesare Alippi
L. Livi
21
1
0
09 Sep 2019
Sampled Softmax with Random Fourier Features
A. S. Rawat
Jiecao Chen
Felix X. Yu
A. Suresh
Sanjiv Kumar
31
55
0
24 Jul 2019
Frontal Low-rank Random Tensors for Fine-grained Action Segmentation
Yan Zhang
Krikamol Muandet
Qianli Ma
Heiko Neumann
Siyu Tang
26
3
0
03 Jun 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
32
14
0
27 May 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
24
18
0
22 Feb 2019
Manifold Regularization for Kernelized LSTD
Xinyan Yan
K. Choromanski
Byron Boots
Vikas Sindhwani
OffRL
11
1
0
15 Oct 2017
Online Learning for Distribution-Free Prediction
Dave Zachariah
Petre Stoica
Thomas B. Schon
16
8
0
15 Mar 2017
The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings
K. Choromanski
Mark Rowland
Adrian Weller
8
85
0
02 Mar 2017
Distributed Mean Estimation with Limited Communication
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
22
360
0
02 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
16
4,588
0
18 Oct 2016
Sketching for Large-Scale Learning of Mixture Models
Nicolas Keriven
Anthony Bourrier
Rémi Gribonval
Patrick Pérez
25
75
0
09 Jun 2016
1