Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.06665
Cited By
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
21 October 2016
Changyou Chen
Nan Ding
Lawrence Carin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators"
30 / 30 papers shown
Title
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
46
4
0
14 Oct 2024
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
39
4
0
13 May 2024
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
26
20
0
29 May 2023
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurélien Lucchi
23
13
0
19 Jan 2023
High-Frequency Space Diffusion Models for Accelerated MRI
Chentao Cao
Zhuoxu Cui
Yue Wang
Shaonan Liu
Taijin Chen
Hairong Zheng
Dong Liang
Yanjie Zhu
DiffM
MedIm
32
50
0
10 Aug 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
26
10
0
20 Feb 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
27
16
0
09 Dec 2021
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics
Alain Durmus
Aurélien Enfroy
Eric Moulines
G. Stoltz
22
17
0
30 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
39
27
0
19 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
27
8
0
02 Oct 2020
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
19
24
0
23 Apr 2020
Probabilistic Permutation Synchronization using the Riemannian Structure of the Birkhoff Polytope
Tolga Birdal
Umut Simsekli
25
37
0
11 Apr 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
19
10
0
25 Mar 2019
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
22
38
0
31 May 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
18
86
0
29 May 2018
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
15
177
0
22 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
24
31
0
13 Feb 2018
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
35
38
0
25 Dec 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
34
57
0
04 Sep 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
31
200
0
20 Jul 2017
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
25
101
0
16 Jun 2017
Fractional Langevin Monte Carlo: Exploring Lévy Driven Stochastic Differential Equations for Markov Chain Monte Carlo
Umut Simsekli
33
45
0
12 Jun 2017
Langevin Dynamics with Continuous Tempering for Training Deep Neural Networks
Nanyang Ye
Zhanxing Zhu
Rafał K. Mantiuk
11
20
0
13 Mar 2017
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDL
UQCV
50
41
0
23 Nov 2016
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
25
18
0
12 Sep 2016
Stochastic Quasi-Newton Langevin Monte Carlo
Umut Simsekli
Roland Badeau
A. Cemgil
G. Richard
BDL
14
60
0
10 Feb 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
22
319
0
23 Dec 2015
1