Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05492
Cited By
Federated Learning: Strategies for Improving Communication Efficiency
18 October 2016
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Learning: Strategies for Improving Communication Efficiency"
50 / 1,850 papers shown
Title
Identifying Backdoor Attacks in Federated Learning via Anomaly Detection
Yuxi Mi
Yiheng Sun
Jihong Guan
Shuigeng Zhou
AAML
FedML
21
1
0
09 Feb 2022
Practical Challenges in Differentially-Private Federated Survival Analysis of Medical Data
Shadi Rahimian
Raouf Kerkouche
I. Kurth
Mario Fritz
FedML
22
11
0
08 Feb 2022
Asynchronous Parallel Incremental Block-Coordinate Descent for Decentralized Machine Learning
Hao Chen
Yu Ye
Ming Xiao
Mikael Skoglund
34
3
0
07 Feb 2022
Lossy Gradient Compression: How Much Accuracy Can One Bit Buy?
Sadaf Salehkalaibar
Stefano Rini
FedML
37
4
0
06 Feb 2022
Optimal Algorithms for Decentralized Stochastic Variational Inequalities
D. Kovalev
Aleksandr Beznosikov
Abdurakhmon Sadiev
Michael Persiianov
Peter Richtárik
Alexander Gasnikov
42
35
0
06 Feb 2022
Privacy-preserving Speech Emotion Recognition through Semi-Supervised Federated Learning
Vasileios Tsouvalas
T. Ozcelebi
N. Meratnia
36
21
0
05 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
42
15
0
05 Feb 2022
Improved Information Theoretic Generalization Bounds for Distributed and Federated Learning
L. P. Barnes
Alex Dytso
H. V. Poor
FedML
41
16
0
04 Feb 2022
Aggregation Service for Federated Learning: An Efficient, Secure, and More Resilient Realization
Yifeng Zheng
Shangqi Lai
Yi Liu
Xingliang Yuan
X. Yi
Cong Wang
FedML
35
84
0
04 Feb 2022
DASHA: Distributed Nonconvex Optimization with Communication Compression, Optimal Oracle Complexity, and No Client Synchronization
Alexander Tyurin
Peter Richtárik
46
19
0
02 Feb 2022
FedSpace: An Efficient Federated Learning Framework at Satellites and Ground Stations
Jinhyun So
Kevin Hsieh
Behnaz Arzani
Shadi Noghabi
Salman Avestimehr
Ranveer Chandra
FedML
18
60
0
02 Feb 2022
3PC: Three Point Compressors for Communication-Efficient Distributed Training and a Better Theory for Lazy Aggregation
Peter Richtárik
Igor Sokolov
Ilyas Fatkhullin
Elnur Gasanov
Zhize Li
Eduard A. Gorbunov
31
31
0
02 Feb 2022
Federated Learning Challenges and Opportunities: An Outlook
Jie Ding
Eric W. Tramel
Anit Kumar Sahu
Shuang Wu
Salman Avestimehr
Tao Zhang
FedML
52
56
0
01 Feb 2022
Recycling Model Updates in Federated Learning: Are Gradient Subspaces Low-Rank?
Sheikh Shams Azam
Seyyedali Hosseinalipour
Qiang Qiu
Christopher G. Brinton
FedML
44
20
0
01 Feb 2022
Factorized-FL: Agnostic Personalized Federated Learning with Kernel Factorization & Similarity Matching
Wonyong Jeong
Sung Ju Hwang
FedML
42
4
0
01 Feb 2022
DoCoM: Compressed Decentralized Optimization with Near-Optimal Sample Complexity
Chung-Yiu Yau
Hoi-To Wai
101
6
0
01 Feb 2022
Securing Federated Sensitive Topic Classification against Poisoning Attacks
Tianyue Chu
Álvaro García-Recuero
Costas Iordanou
Georgios Smaragdakis
Nikolaos Laoutaris
62
9
0
31 Jan 2022
On the Convergence of Heterogeneous Federated Learning with Arbitrary Adaptive Online Model Pruning
Hanhan Zhou
Tian-Shing Lan
Guru Venkataramani
Wenbo Ding
FedML
32
6
0
27 Jan 2022
Achieving Personalized Federated Learning with Sparse Local Models
Tiansheng Huang
Shiwei Liu
Li Shen
Fengxiang He
Weiwei Lin
Dacheng Tao
FedML
38
43
0
27 Jan 2022
Server-Side Stepsizes and Sampling Without Replacement Provably Help in Federated Optimization
Grigory Malinovsky
Konstantin Mishchenko
Peter Richtárik
FedML
19
24
0
26 Jan 2022
An Efficient and Robust System for Vertically Federated Random Forest
Houpu Yao
Jiazhou Wang
Peng Dai
Liefeng Bo
Yanqing Chen
FedML
82
12
0
26 Jan 2022
Modality Bank: Learn multi-modality images across data centers without sharing medical data
Qi Chang
Hui Qu
Zhennan Yan
Yunhe Gao
L. Baskaran
Dimitris N. Metaxas
MedIm
22
4
0
22 Jan 2022
TOFU: Towards Obfuscated Federated Updates by Encoding Weight Updates into Gradients from Proxy Data
Isha Garg
M. Nagaraj
Kaushik Roy
FedML
36
1
0
21 Jan 2022
Federated Learning with Heterogeneous Architectures using Graph HyperNetworks
Or Litany
Haggai Maron
David Acuna
Jan Kautz
Gal Chechik
Sanja Fidler
FedML
43
24
0
20 Jan 2022
Minimax Demographic Group Fairness in Federated Learning
Afroditi Papadaki
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
Miguel R. D. Rodrigues
FaML
FedML
16
43
0
20 Jan 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
37
215
0
20 Jan 2022
Communication-Efficient Device Scheduling for Federated Learning Using Stochastic Optimization
Jake B. Perazzone
Shiqiang Wang
Mingyue Ji
Kevin S. Chan
FedML
24
73
0
19 Jan 2022
AESPA: Accuracy Preserving Low-degree Polynomial Activation for Fast Private Inference
J. Park
M. Kim
Wonkyung Jung
Jung Ho Ahn
LLMSV
16
27
0
18 Jan 2022
EFMVFL: An Efficient and Flexible Multi-party Vertical Federated Learning without a Third Party
Yimin Huang
Xinyu Feng
Wanwan Wang
Hao He
Yukun Wang
Mingxuan Yao
FedML
22
7
0
17 Jan 2022
An Interpretable Federated Learning-based Network Intrusion Detection Framework
Tian Dong
Song Li
Han Qiu
Jialiang Lu
FedML
19
16
0
10 Jan 2022
A Multi-agent Reinforcement Learning Approach for Efficient Client Selection in Federated Learning
Shanghang Zhang
Jieyu Lin
Qi Zhang
42
63
0
09 Jan 2022
LoMar: A Local Defense Against Poisoning Attack on Federated Learning
Xingyu Li
Zhe Qu
Shangqing Zhao
Bo Tang
Zhuo Lu
Yao-Hong Liu
AAML
41
94
0
08 Jan 2022
A Fair and Efficient Hybrid Federated Learning Framework based on XGBoost for Distributed Power Prediction
Haizhou Liu
Xuan Zhang
Xinwei Shen
Hongbin Sun
FedML
24
6
0
08 Jan 2022
BottleFit: Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing
Yoshitomo Matsubara
Davide Callegaro
Sameer Singh
Marco Levorato
Francesco Restuccia
32
41
0
07 Jan 2022
Optimizing the Communication-Accuracy Trade-off in Federated Learning with Rate-Distortion Theory
Nicole Mitchell
Johannes Ballé
Zachary B. Charles
Jakub Konecný
FedML
21
21
0
07 Jan 2022
FedBalancer: Data and Pace Control for Efficient Federated Learning on Heterogeneous Clients
Jaemin Shin
Yuanchun Li
Yunxin Liu
Sung-Ju Lee
FedML
19
74
0
05 Jan 2022
Integrating Human-in-the-loop into Swarm Learning for Decentralized Fake News Detection
Xishuang Dong
Lijun Qian
33
9
0
04 Jan 2022
Improving the Behaviour of Vision Transformers with Token-consistent Stochastic Layers
Nikola Popovic
D. Paudel
Thomas Probst
Luc Van Gool
39
1
0
30 Dec 2021
Challenges and Approaches for Mitigating Byzantine Attacks in Federated Learning
Junyu Shi
Wei Wan
Shengshan Hu
Jianrong Lu
L. Zhang
AAML
47
74
0
29 Dec 2021
Robust Convergence in Federated Learning through Label-wise Clustering
Hunmin Lee
Yueyang Liu
Donghyun Kim
Yingshu Li
FedML
25
1
0
28 Dec 2021
Resource-Efficient and Delay-Aware Federated Learning Design under Edge Heterogeneity
David Nickel
F. Lin
Seyyedali Hosseinalipour
Nicolò Michelusi
Christopher G. Brinton
FedML
32
1
0
27 Dec 2021
FRuDA: Framework for Distributed Adversarial Domain Adaptation
Shaoduo Gan
Akhil Mathur
Anton Isopoussu
F. Kawsar
N. Bianchi-Berthouze
Nicholas D. Lane
19
12
0
26 Dec 2021
Faster Rates for Compressed Federated Learning with Client-Variance Reduction
Haoyu Zhao
Konstantin Burlachenko
Zhize Li
Peter Richtárik
FedML
35
13
0
24 Dec 2021
EIFFeL: Ensuring Integrity for Federated Learning
A. Chowdhury
Chuan Guo
S. Jha
Laurens van der Maaten
FedML
77
74
0
23 Dec 2021
FedFR: Joint Optimization Federated Framework for Generic and Personalized Face Recognition
Chih-Ting Liu
Chien-Yi Wang
Shao-Yi Chien
S. Lai
FedML
29
36
0
23 Dec 2021
FedLGA: Towards System-Heterogeneity of Federated Learning via Local Gradient Approximation
Xingyu Li
Zhe Qu
Bo Tang
Zhuo Lu
FedML
38
26
0
22 Dec 2021
Tackling System and Statistical Heterogeneity for Federated Learning with Adaptive Client Sampling
Bing Luo
Wenli Xiao
Shiqiang Wang
Jianwei Huang
Leandros Tassiulas
FedML
45
170
0
21 Dec 2021
Distributed Machine Learning and the Semblance of Trust
Dmitrii Usynin
Alexander Ziller
Daniel Rueckert
Jonathan Passerat-Palmbach
Georgios Kaissis
24
1
0
21 Dec 2021
Federated Dynamic Sparse Training: Computing Less, Communicating Less, Yet Learning Better
Sameer Bibikar
H. Vikalo
Zhangyang Wang
Xiaohan Chen
FedML
35
96
0
18 Dec 2021
A Review on Visual Privacy Preservation Techniques for Active and Assisted Living
Siddharth Ravi
Pau Climent-Pérez
Francisco Flórez-Revuelta
42
33
0
17 Dec 2021
Previous
1
2
3
...
18
19
20
...
35
36
37
Next