Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05492
Cited By
Federated Learning: Strategies for Improving Communication Efficiency
18 October 2016
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Learning: Strategies for Improving Communication Efficiency"
50 / 1,850 papers shown
Title
FADL:Federated-Autonomous Deep Learning for Distributed Electronic Health Record
Dianbo Liu
Timothy A. Miller
R. Sayeed
K. Mandl
FedML
OOD
20
59
0
28 Nov 2018
Biscotti: A Ledger for Private and Secure Peer-to-Peer Machine Learning
Muhammad Shayan
Clement Fung
Chris J. M. Yoon
Ivan Beschastnikh
FedML
16
81
0
24 Nov 2018
Hydra: A Peer to Peer Distributed Training & Data Collection Framework
Vaibhav Mathur
K. Chahal
OffRL
24
2
0
24 Nov 2018
WEST: Word Encoded Sequence Transducers
Ehsan Variani
A. Suresh
M. Weintraub
22
9
0
20 Nov 2018
MD-GAN: Multi-Discriminator Generative Adversarial Networks for Distributed Datasets
Corentin Hardy
Erwan Le Merrer
B. Sericola
GAN
27
181
0
09 Nov 2018
A Hitchhiker's Guide On Distributed Training of Deep Neural Networks
K. Chahal
Manraj Singh Grover
Kuntal Dey
3DH
OOD
6
53
0
28 Oct 2018
K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning
Pramod Kaushik Mudrakarta
Mark Sandler
A. Zhmoginov
Andrew G. Howard
14
68
0
25 Oct 2018
Computation Scheduling for Distributed Machine Learning with Straggling Workers
Mohammad Mohammadi Amiri
Deniz Gunduz
FedML
16
3
0
23 Oct 2018
Federated Learning for Keyword Spotting
David Leroy
A. Coucke
Thibaut Lavril
Thibault Gisselbrecht
Joseph Dureau
FedML
25
282
0
09 Oct 2018
Generalizing the theory of cooperative inference
Pei Wang
P. Paranamana
Patrick Shafto
FedML
21
14
0
04 Oct 2018
Universal Multi-Party Poisoning Attacks
Saeed Mahloujifar
Mohammad Mahmoody
Ameer Mohammed
AAML
20
43
0
10 Sep 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
33
348
0
22 Aug 2018
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
57
429
0
22 Aug 2018
A Survey on Methods and Theories of Quantized Neural Networks
Yunhui Guo
MQ
34
232
0
13 Aug 2018
COLA: Decentralized Linear Learning
Lie He
An Bian
Martin Jaggi
24
117
0
13 Aug 2018
Blockchain as a Service: A Decentralized and Secure Computing Paradigm
G. Mendis
Yifu Wu
Jin Wei
Moein Sabounchi
Rigoberto Roche'
29
21
0
05 Jul 2018
How To Backdoor Federated Learning
Eugene Bagdasaryan
Andreas Veit
Yiqing Hua
D. Estrin
Vitaly Shmatikov
SILM
FedML
13
1,879
0
02 Jul 2018
ATOMO: Communication-efficient Learning via Atomic Sparsification
Hongyi Wang
Scott Sievert
Zachary B. Charles
Shengchao Liu
S. Wright
Dimitris Papailiopoulos
22
351
0
11 Jun 2018
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
51
2,530
0
02 Jun 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
28
486
0
27 May 2018
Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance
Cong Xie
Oluwasanmi Koyejo
Indranil Gupta
FedML
24
46
0
25 May 2018
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
36
212
0
22 May 2018
Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning
Tribhuvanesh Orekondy
Seong Joon Oh
Yang Zhang
Bernt Schiele
Mario Fritz
PICV
FedML
359
37
0
15 May 2018
PRADA: Protecting against DNN Model Stealing Attacks
Mika Juuti
S. Szyller
Samuel Marchal
Nadarajah Asokan
SILM
AAML
35
439
0
07 May 2018
Securing Distributed Gradient Descent in High Dimensional Statistical Learning
Lili Su
Jiaming Xu
FedML
137
35
0
26 Apr 2018
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
Takayuki Nishio
Ryo Yonetani
FedML
51
1,376
0
23 Apr 2018
Value-aware Quantization for Training and Inference of Neural Networks
Eunhyeok Park
S. Yoo
Peter Vajda
MQ
14
158
0
20 Apr 2018
DÏoT: A Federated Self-learning Anomaly Detection System for IoT
T. D. Nguyen
Samuel Marchal
Markus Miettinen
Hossein Fereidooni
Nadarajah Asokan
A. Sadeghi
69
489
0
20 Apr 2018
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,688
0
14 Apr 2018
DRACO: Byzantine-resilient Distributed Training via Redundant Gradients
Lingjiao Chen
Hongyi Wang
Zachary B. Charles
Dimitris Papailiopoulos
19
243
0
27 Mar 2018
Byzantine Stochastic Gradient Descent
Dan Alistarh
Zeyuan Allen-Zhu
Jingkai Li
FedML
24
296
0
23 Mar 2018
Entity Resolution and Federated Learning get a Federated Resolution
Richard Nock
Stephen Hardy
Wilko Henecka
Hamish Ivey-Law
Giorgio Patrini
Guillaume Smith
Brian Thorne
FedML
29
87
0
11 Mar 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
16
1,467
0
05 Mar 2018
Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD
Sanghamitra Dutta
Gauri Joshi
Soumyadip Ghosh
Parijat Dube
P. Nagpurkar
31
194
0
03 Mar 2018
Federated Meta-Learning with Fast Convergence and Efficient Communication
Fei Chen
Mi Luo
Zhenhua Dong
Zhenguo Li
Xiuqiang He
FedML
34
388
0
22 Feb 2018
3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning
Hyeontaek Lim
D. Andersen
M. Kaminsky
21
70
0
21 Feb 2018
Sometimes You Want to Go Where Everybody Knows your Name
Reuben Brasher
Nat Roth
Justin Wagle
25
0
0
30 Jan 2018
Differentially Private Distributed Learning for Language Modeling Tasks
Vadim Popov
Mikhail Kudinov
Irina Piontkovskaya
Petr Vytovtov
A. Nevidomsky
FedML
38
3
0
20 Dec 2017
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
62
1,388
0
05 Dec 2017
Learning Discrete Distributions from Untrusted Batches
Mingda Qiao
Gregory Valiant
FedML
25
34
0
22 Nov 2017
Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges
Muhammad Usama
Junaid Qadir
Aunn Raza
Hunain Arif
K. Yau
Y. Elkhatib
Amir Hussain
Ala I. Al-Fuqaha
SSL
33
317
0
19 Sep 2017
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
36
127
0
11 Sep 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
29
38
0
04 Jul 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
17
1,782
0
30 May 2017
A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics
Seyed Ali Osia
Ali Shahin Shamsabadi
Sina Sajadmanesh
A. Taheri
Kleomenis Katevas
Hamid R. Rabiee
Nicholas D. Lane
Hamed Haddadi
9
234
0
08 Mar 2017
Distributed deep learning on edge-devices: feasibility via adaptive compression
Corentin Hardy
Erwan Le Merrer
B. Sericola
22
64
0
15 Feb 2017
Randomized Distributed Mean Estimation: Accuracy vs Communication
Jakub Konecný
Peter Richtárik
FedML
33
101
0
22 Nov 2016
Distributed Mean Estimation with Limited Communication
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
33
361
0
02 Nov 2016
Towards Geo-Distributed Machine Learning
Ignacio Cano
Markus Weimer
D. Mahajan
Carlo Curino
Giovanni Matteo Fumarola
25
56
0
30 Mar 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
56
17,088
0
17 Feb 2016
Previous
1
2
3
...
35
36
37