Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.03774
Cited By
Parallelizing Stochastic Gradient Descent for Least Squares Regression: mini-batching, averaging, and model misspecification
12 October 2016
Prateek Jain
Sham Kakade
Rahul Kidambi
Praneeth Netrapalli
Aaron Sidford
MoMe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Parallelizing Stochastic Gradient Descent for Least Squares Regression: mini-batching, averaging, and model misspecification"
8 / 8 papers shown
Title
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
J. Lee
G. Mahajan
11
315
0
01 Aug 2019
The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure For Least Squares
Rong Ge
Sham Kakade
Rahul Kidambi
Praneeth Netrapalli
23
149
0
29 Apr 2019
The Effect of Network Width on the Performance of Large-batch Training
Lingjiao Chen
Hongyi Wang
Jinman Zhao
Dimitris Papailiopoulos
Paraschos Koutris
13
22
0
11 Jun 2018
On the insufficiency of existing momentum schemes for Stochastic Optimization
Rahul Kidambi
Praneeth Netrapalli
Prateek Jain
Sham Kakade
ODL
19
117
0
15 Mar 2018
Iterate averaging as regularization for stochastic gradient descent
Gergely Neu
Lorenzo Rosasco
MoMe
32
61
0
22 Feb 2018
Exponential convergence of testing error for stochastic gradient methods
Loucas Pillaud-Vivien
Alessandro Rudi
Francis R. Bach
24
31
0
13 Dec 2017
Stochastic Composite Least-Squares Regression with convergence rate O(1/n)
Nicolas Flammarion
Francis R. Bach
24
27
0
21 Feb 2017
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
177
683
0
07 Dec 2010
1