ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.03483
  4. Cited By
Learning in Implicit Generative Models

Learning in Implicit Generative Models

11 October 2016
S. Mohamed
Balaji Lakshminarayanan
    GAN
ArXivPDFHTML

Papers citing "Learning in Implicit Generative Models"

34 / 34 papers shown
Title
Proper scoring rules for estimation and forecast evaluation
Proper scoring rules for estimation and forecast evaluation
Kartik Waghmare
Johanna Ziegel
AI4TS
127
0
0
02 Apr 2025
Diffusion Models in Recommendation Systems: A Survey
Diffusion Models in Recommendation Systems: A Survey
Ting-Ruen Wei
Yi Fang
129
2
0
20 Feb 2025
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
141
9
0
17 Feb 2025
Binary Losses for Density Ratio Estimation
Binary Losses for Density Ratio Estimation
Werner Zellinger
86
0
0
28 Jan 2025
Your copula is a classifier in disguise: classification-based copula density estimation
Your copula is a classifier in disguise: classification-based copula density estimation
David Huk
Mark Steel
Ritabrata Dutta
116
0
0
05 Nov 2024
Learning Latent Graph Structures and their Uncertainty
Learning Latent Graph Structures and their Uncertainty
A. Manenti
Daniele Zambon
Cesare Alippi
BDL
90
1
0
30 May 2024
Diffusion Bridge Implicit Models
Diffusion Bridge Implicit Models
Kaiwen Zheng
Guande He
Jianfei Chen
Fan Bao
Jun Zhu
DiffM
103
15
0
24 May 2024
Variational Inference using Implicit Distributions
Variational Inference using Implicit Distributions
Ferenc Huszár
DRL
GAN
95
135
0
27 Feb 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
131
4,817
0
26 Jan 2017
Towards Principled Methods for Training Generative Adversarial Networks
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
74
2,102
0
17 Jan 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
BDL
86
528
0
17 Jan 2017
Adversarial Message Passing For Graphical Models
Adversarial Message Passing For Graphical Models
Theofanis Karaletsos
GAN
41
29
0
15 Dec 2016
Improved generator objectives for GANs
Improved generator objectives for GANs
Ben Poole
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
A. Angelova
37
70
0
08 Dec 2016
Generative Models and Model Criticism via Optimized Maximum Mean
  Discrepancy
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy
Danica J. Sutherland
H. Tung
Heiko Strathmann
Soumyajit De
Aaditya Ramdas
Alex Smola
Arthur Gretton
47
258
0
14 Nov 2016
On the Quantitative Analysis of Decoder-Based Generative Models
On the Quantitative Analysis of Decoder-Based Generative Models
Yuhuai Wu
Yuri Burda
Ruslan Salakhutdinov
Roger C. Grosse
GAN
69
223
0
14 Nov 2016
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
95
397
0
20 Oct 2016
Amortised MAP Inference for Image Super-resolution
Amortised MAP Inference for Image Super-resolution
C. Sønderby
Jose Caballero
Lucas Theis
Wenzhe Shi
Ferenc Huszár
70
435
0
14 Oct 2016
Generative Adversarial Nets from a Density Ratio Estimation Perspective
Generative Adversarial Nets from a Density Ratio Estimation Perspective
Masatoshi Uehara
Issei Sato
Masahiro Suzuki
Kotaro Nakayama
Y. Matsuo
GAN
60
104
0
10 Oct 2016
Task Specific Adversarial Cost Function
Task Specific Adversarial Cost Function
Antonia Creswell
Anil A. Bharath
AAML
GAN
60
13
0
27 Sep 2016
Energy-based Generative Adversarial Network
Energy-based Generative Adversarial Network
Jiaqi Zhao
Michaël Mathieu
Yann LeCun
GAN
118
1,112
0
11 Sep 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
358
8,999
0
10 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
86
1,648
0
02 Jun 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
226
13,968
0
19 Nov 2015
How (not) to Train your Generative Model: Scheduled Sampling,
  Likelihood, Adversary?
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
Ferenc Huszár
OOD
DiffM
GAN
43
296
0
16 Nov 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
61
1,139
0
05 Nov 2015
Learning with a Wasserstein Loss
Learning with a Wasserstein Loss
Charlie Frogner
Chiyuan Zhang
H. Mobahi
Mauricio Araya-Polo
T. Poggio
29
598
0
17 Jun 2015
Fast Two-Sample Testing with Analytic Representations of Probability
  Measures
Fast Two-Sample Testing with Analytic Representations of Probability Measures
Kacper P. Chwialkowski
Aaditya Ramdas
Dino Sejdinovic
Arthur Gretton
41
154
0
15 Jun 2015
Approximating Likelihood Ratios with Calibrated Discriminative
  Classifiers
Approximating Likelihood Ratios with Calibrated Discriminative Classifiers
Kyle Cranmer
J. Pavez
Gilles Louppe
73
223
0
06 Jun 2015
Training generative neural networks via Maximum Mean Discrepancy
  optimization
Training generative neural networks via Maximum Mean Discrepancy optimization
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
71
528
0
14 May 2015
Generative Moment Matching Networks
Generative Moment Matching Networks
Yujia Li
Kevin Swersky
R. Zemel
OOD
GAN
88
844
0
10 Feb 2015
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based
  Statistical Models
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
Michael U. Gutmann
J. Corander
100
285
0
14 Jan 2015
Density-Difference Estimation
Density-Difference Estimation
Masashi Sugiyama
Takafumi Kanamori
Taiji Suzuki
M. C. D. Plessis
Song Liu
Ichiro Takeuchi
OT
45
78
0
30 Jun 2012
Approximate Bayesian Computational methods
Approximate Bayesian Computational methods
Jean-Michel Marin
Pierre Pudlo
Christian P. Robert
Robin J. Ryder
158
861
0
05 Jan 2011
Information, Divergence and Risk for Binary Experiments
Information, Divergence and Risk for Binary Experiments
Mark D. Reid
Robert C. Williamson
82
231
0
05 Jan 2009
1