ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.03425
  4. Cited By
Statistics of Robust Optimization: A Generalized Empirical Likelihood
  Approach

Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach

11 October 2016
John C. Duchi
Peter Glynn
Hongseok Namkoong
ArXivPDFHTML

Papers citing "Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach"

50 / 76 papers shown
Title
Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws
Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws
Xiyuan Wei
Ming Lin
Fanjiang Ye
Fengguang Song
Liangliang Cao
My T. Thai
Tianbao Yang
LLMSV
34
0
0
10 May 2025
Sparfels: Fast Reconstruction from Sparse Unposed Imagery
Sparfels: Fast Reconstruction from Sparse Unposed Imagery
Shubhendu Jena
Amine Ouasfi
Mae Younes
A. Boukhayma
3DGS
62
1
0
04 May 2025
Class-Conditional Distribution Balancing for Group Robust Classification
Class-Conditional Distribution Balancing for Group Robust Classification
Miaoyun Zhao
Qiang Zhang
C. Li
70
1
0
24 Apr 2025
Predicting Practically? Domain Generalization for Predictive Analytics in Real-world Environments
Hanyu Duan
Yi Yang
Ahmed Abbasi
Kar Yan Tam
OOD
97
0
0
05 Mar 2025
New Perspectives on Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
New Perspectives on Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
Soroosh Shafieezadeh-Abadeh
Liviu Aolaritei
Florian Dorfler
Daniel Kuhn
66
20
0
31 Dec 2024
Distributionally Robust Optimization
Distributionally Robust Optimization
Daniel Kuhn
Soroosh Shafiee
W. Wiesemann
40
0
0
04 Nov 2024
Evaluating Model Performance Under Worst-case Subpopulations
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
48
17
0
01 Jul 2024
Mind the Graph When Balancing Data for Fairness or Robustness
Mind the Graph When Balancing Data for Fairness or Robustness
Jessica Schrouff
Alexis Bellot
Amal Rannen-Triki
Alan Malek
Isabela Albuquerque
Arthur Gretton
Alexander DÁmour
Silvia Chiappa
OOD
CML
56
1
0
25 Jun 2024
Rejection via Learning Density Ratios
Rejection via Learning Density Ratios
Alexander Soen
Hisham Husain
Philip Schulz
Vu-Linh Nguyen
58
2
0
29 May 2024
Generalization Analysis of Machine Learning Algorithms via the
  Worst-Case Data-Generating Probability Measure
Generalization Analysis of Machine Learning Algorithms via the Worst-Case Data-Generating Probability Measure
Xinying Zou
S. Perlaza
I. Esnaola
Eitan Altman
29
16
0
19 Dec 2023
FedDRO: Federated Compositional Optimization for Distributionally Robust
  Learning
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
45
0
0
21 Nov 2023
Stochastic Re-weighted Gradient Descent via Distributionally Robust
  Optimization
Stochastic Re-weighted Gradient Descent via Distributionally Robust Optimization
Ramnath Kumar
Kushal Majmundar
Dheeraj M. Nagaraj
A. Suggala
ODL
34
6
0
15 Jun 2023
Efficient Stochastic Approximation of Minimax Excess Risk Optimization
Efficient Stochastic Approximation of Minimax Excess Risk Optimization
Lijun Zhang
Haomin Bai
W. Tu
Ping Yang
Yao Hu
14
4
0
31 May 2023
Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization
Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization
Ting Wu
Rui Zheng
Tao Gui
Qi Zhang
Xuanjing Huang
51
2
0
20 May 2023
Estimation Beyond Data Reweighting: Kernel Method of Moments
Estimation Beyond Data Reweighting: Kernel Method of Moments
Heiner Kremer
Yassine Nemmour
Bernhard Schölkopf
Jia-Jie Zhu
36
7
0
18 May 2023
Statistical Limit Theorems in Distributionally Robust Optimization
Statistical Limit Theorems in Distributionally Robust Optimization
Jose H. Blanchet
A. Shapiro
33
13
0
27 Mar 2023
Group conditional validity via multi-group learning
Samuel Deng
Navid Ardeshir
Daniel J. Hsu
35
1
0
07 Mar 2023
A Finite Sample Complexity Bound for Distributionally Robust Q-learning
A Finite Sample Complexity Bound for Distributionally Robust Q-learning
Shengbo Wang
Nian Si
Jose H. Blanchet
Zhengyuan Zhou
OOD
OffRL
40
24
0
26 Feb 2023
Learning Optimal Features via Partial Invariance
Learning Optimal Features via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
L. Varshney
OOD
28
2
0
28 Jan 2023
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Xiao Zhou
Yong Lin
Renjie Pi
Weizhong Zhang
Renzhe Xu
Peng Cui
Tong Zhang
OODD
39
60
0
24 Jan 2023
Calibrated Data-Dependent Constraints with Exact Satisfaction Guarantees
Calibrated Data-Dependent Constraints with Exact Satisfaction Guarantees
Songkai Xue
Yuekai Sun
Mikhail Yurochkin
FaML
13
0
0
15 Jan 2023
Beckman Defense
Beckman Defense
A. V. Subramanyam
OOD
AAML
42
0
0
04 Jan 2023
A Distributionally Robust Optimization Framework for Extreme Event
  Estimation
A Distributionally Robust Optimization Framework for Extreme Event Estimation
Yuanlu Bai
H. Lam
Xinyu Zhang
34
4
0
03 Jan 2023
Distributional Robustness Bounds Generalization Errors
Distributional Robustness Bounds Generalization Errors
Shixiong Wang
Haowei Wang
OOD
35
4
0
20 Dec 2022
On the Connection between Invariant Learning and Adversarial Training
  for Out-of-Distribution Generalization
On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization
Shiji Xin
Yifei Wang
Jingtong Su
Yisen Wang
OOD
23
7
0
18 Dec 2022
Stochastic Constrained DRO with a Complexity Independent of Sample Size
Stochastic Constrained DRO with a Complexity Independent of Sample Size
Q. Qi
Jiameng Lyu
Kung-Sik Chan
E. Bai
Tianbao Yang
50
15
0
11 Oct 2022
MaskTune: Mitigating Spurious Correlations by Forcing to Explore
MaskTune: Mitigating Spurious Correlations by Forcing to Explore
Saeid Asgari Taghanaki
Aliasghar Khani
Fereshte Khani
A. Gholami
Linh-Tam Tran
Ali Mahdavi-Amiri
Ghassan Hamarneh
AAML
46
45
0
30 Sep 2022
Quantile-constrained Wasserstein projections for robust interpretability
  of numerical and machine learning models
Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models
Marouane Il Idrissi
Nicolas Bousquet
Fabrice Gamboa
Bertrand Iooss
Jean-Michel Loubes
39
3
0
23 Sep 2022
Distributionally Robust Offline Reinforcement Learning with Linear
  Function Approximation
Distributionally Robust Offline Reinforcement Learning with Linear Function Approximation
Xiaoteng Ma
Zhipeng Liang
Jose H. Blanchet
MingWen Liu
Li Xia
Jiheng Zhang
Qianchuan Zhao
Zhengyuan Zhou
OOD
OffRL
41
22
0
14 Sep 2022
Holistic Robust Data-Driven Decisions
Holistic Robust Data-Driven Decisions
Amine Bennouna
Bart P. G. Van Parys
Ryan Lucas
OOD
36
22
0
19 Jul 2022
Scalable Distributional Robustness in a Class of Non Convex Optimization
  with Guarantees
Scalable Distributional Robustness in a Class of Non Convex Optimization with Guarantees
Avinandan Bose
Arunesh Sinha
Tien Mai
19
4
0
31 May 2022
Certifying Some Distributional Fairness with Subpopulation Decomposition
Certifying Some Distributional Fairness with Subpopulation Decomposition
Mintong Kang
Linyi Li
Maurice Weber
Yang Liu
Ce Zhang
Bo-wen Li
OOD
58
15
0
31 May 2022
PAC Generalization via Invariant Representations
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
35
3
0
30 May 2022
MetaSets: Meta-Learning on Point Sets for Generalizable Representations
MetaSets: Meta-Learning on Point Sets for Generalizable Representations
Chao Huang
Zhangjie Cao
Yunbo Wang
Jianmin Wang
Mingsheng Long
3DPC
21
30
0
15 Apr 2022
Distributionally Robust Bayesian Optimization with $\varphi$-divergences
Distributionally Robust Bayesian Optimization with φ\varphiφ-divergences
Hisham Husain
Vu-Linh Nguyen
Anton Van Den Hengel
40
13
0
04 Mar 2022
Global-Local Regularization Via Distributional Robustness
Global-Local Regularization Via Distributional Robustness
Hoang Phan
Trung Le
Trung-Nghia Phung
Tu Bui
Nhat Ho
Dinh Q. Phung
OOD
22
12
0
01 Mar 2022
A Unified Wasserstein Distributional Robustness Framework for
  Adversarial Training
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
41
43
0
27 Feb 2022
Minimax risk classifiers with 0-1 loss
Minimax risk classifiers with 0-1 loss
Santiago Mazuelas
Mauricio Romero
Peter Grünwald
32
6
0
17 Jan 2022
Towards Group Robustness in the presence of Partial Group Labels
Towards Group Robustness in the presence of Partial Group Labels
Vishnu Suresh Lokhande
Kihyuk Sohn
Jinsung Yoon
Madeleine Udell
Chen-Yu Lee
Tomas Pfister
OOD
40
11
0
10 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Balancing Fairness and Robustness via Partial Invariance
Balancing Fairness and Robustness via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
L. Varshney
OOD
36
1
0
17 Dec 2021
Measure and Improve Robustness in NLP Models: A Survey
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
139
130
0
15 Dec 2021
Toward Learning Human-aligned Cross-domain Robust Models by Countering
  Misaligned Features
Toward Learning Human-aligned Cross-domain Robust Models by Countering Misaligned Features
Haohan Wang
Zeyi Huang
Hanlin Zhang
Yong Jae Lee
Eric P. Xing
OOD
138
16
0
05 Nov 2021
A Survey of Learning Criteria Going Beyond the Usual Risk
A Survey of Learning Criteria Going Beyond the Usual Risk
Matthew J. Holland
Kazuki Tanabe
FaML
24
4
0
11 Oct 2021
Sinkhorn Distributionally Robust Optimization
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
46
35
0
24 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
61
519
0
31 Aug 2021
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Seonguk Seo
Joon-Young Lee
Bohyung Han
FaML
68
48
0
06 Aug 2021
Just Train Twice: Improving Group Robustness without Training Group
  Information
Just Train Twice: Improving Group Robustness without Training Group Information
E. Liu
Behzad Haghgoo
Annie S. Chen
Aditi Raghunathan
Pang Wei Koh
Shiori Sagawa
Percy Liang
Chelsea Finn
OOD
37
540
0
19 Jul 2021
Mandoline: Model Evaluation under Distribution Shift
Mandoline: Model Evaluation under Distribution Shift
Mayee F. Chen
Karan Goel
N. Sohoni
Fait Poms
Kayvon Fatahalian
Christopher Ré
30
69
0
01 Jul 2021
Out-of-distribution Generalization in the Presence of Nuisance-Induced
  Spurious Correlations
Out-of-distribution Generalization in the Presence of Nuisance-Induced Spurious Correlations
A. Puli
Lily H. Zhang
Eric K. Oermann
Rajesh Ranganath
OOD
OODD
27
48
0
29 Jun 2021
12
Next