Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.02132
Cited By
QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding
7 October 2016
Dan Alistarh
Demjan Grubic
Jerry Li
Ryota Tomioka
Milan Vojnović
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding"
50 / 128 papers shown
Title
Paving the Way for Distributed Artificial Intelligence over the Air
Guoqing Ma
Shuping Dang
Chuanting Zhang
B. Shihada
27
3
0
24 Sep 2021
Scalable Average Consensus with Compressed Communications
Taha Toghani
César A. Uribe
22
7
0
14 Sep 2021
Fast Federated Edge Learning with Overlapped Communication and Computation and Channel-Aware Fair Client Scheduling
M. E. Ozfatura
Junlin Zhao
Deniz Gündüz
34
15
0
14 Sep 2021
Bayesian AirComp with Sign-Alignment Precoding for Wireless Federated Learning
Chanhoo Park
Seunghoon Lee
Namyoon Lee
34
5
0
14 Sep 2021
Fundamental limits of over-the-air optimization: Are analog schemes optimal?
Shubham K. Jha
Prathamesh Mayekar
Himanshu Tyagi
29
7
0
11 Sep 2021
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
46
46
0
19 Aug 2021
ErrorCompensatedX: error compensation for variance reduced algorithms
Hanlin Tang
Yao Li
Ji Liu
Ming Yan
32
10
0
04 Aug 2021
Learning a Neural Diff for Speech Models
J. Macoskey
Grant P. Strimel
Ariya Rastrow
18
2
0
03 Aug 2021
Rethinking gradient sparsification as total error minimization
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
50
56
0
02 Aug 2021
Dynamic Neural Network Architectural and Topological Adaptation and Related Methods -- A Survey
Lorenz Kummer
AI4CE
45
0
0
28 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
412
0
14 Jul 2021
ResIST: Layer-Wise Decomposition of ResNets for Distributed Training
Chen Dun
Cameron R. Wolfe
C. Jermaine
Anastasios Kyrillidis
29
21
0
02 Jul 2021
Secure Distributed Training at Scale
Eduard A. Gorbunov
Alexander Borzunov
Michael Diskin
Max Ryabinin
FedML
26
15
0
21 Jun 2021
CD-SGD: Distributed Stochastic Gradient Descent with Compression and Delay Compensation
Enda Yu
Dezun Dong
Yemao Xu
Shuo Ouyang
Xiangke Liao
16
5
0
21 Jun 2021
FedNL: Making Newton-Type Methods Applicable to Federated Learning
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
33
78
0
05 Jun 2021
Escaping Saddle Points with Compressed SGD
Dmitrii Avdiukhin
G. Yaroslavtsev
22
4
0
21 May 2021
Towards Demystifying Serverless Machine Learning Training
Jiawei Jiang
Shaoduo Gan
Yue Liu
Fanlin Wang
Gustavo Alonso
Ana Klimovic
Ankit Singla
Wentao Wu
Ce Zhang
19
122
0
17 May 2021
DP-SIGNSGD: When Efficiency Meets Privacy and Robustness
Lingjuan Lyu
FedML
AAML
27
19
0
11 May 2021
Coded Gradient Aggregation: A Tradeoff Between Communication Costs at Edge Nodes and at Helper Nodes
B. Sasidharan
Anoop Thomas
28
9
0
06 May 2021
Distributed Learning in Wireless Networks: Recent Progress and Future Challenges
Mingzhe Chen
Deniz Gündüz
Kaibin Huang
Walid Saad
M. Bennis
Aneta Vulgarakis Feljan
H. Vincent Poor
45
402
0
05 Apr 2021
Federated Learning: A Signal Processing Perspective
Tomer Gafni
Nir Shlezinger
Kobi Cohen
Yonina C. Eldar
H. Vincent Poor
FedML
39
129
0
31 Mar 2021
Learned Gradient Compression for Distributed Deep Learning
L. Abrahamyan
Yiming Chen
Giannis Bekoulis
Nikos Deligiannis
40
46
0
16 Mar 2021
Efficient Randomized Subspace Embeddings for Distributed Optimization under a Communication Budget
R. Saha
Mert Pilanci
Andrea J. Goldsmith
34
5
0
13 Mar 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
35
59
0
25 Feb 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
75
15
0
16 Feb 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
44
109
0
15 Feb 2021
Communication-efficient Distributed Cooperative Learning with Compressed Beliefs
Taha Toghani
César A. Uribe
27
15
0
14 Feb 2021
Sparse-Push: Communication- & Energy-Efficient Decentralized Distributed Learning over Directed & Time-Varying Graphs with non-IID Datasets
Sai Aparna Aketi
Amandeep Singh
J. Rabaey
29
10
0
10 Feb 2021
1-bit Adam: Communication Efficient Large-Scale Training with Adam's Convergence Speed
Hanlin Tang
Shaoduo Gan
A. A. Awan
Samyam Rajbhandari
Conglong Li
Xiangru Lian
Ji Liu
Ce Zhang
Yuxiong He
AI4CE
45
84
0
04 Feb 2021
Federated Learning over Wireless Device-to-Device Networks: Algorithms and Convergence Analysis
Hong Xing
Osvaldo Simeone
Suzhi Bi
50
94
0
29 Jan 2021
Time-Correlated Sparsification for Communication-Efficient Federated Learning
Emre Ozfatura
Kerem Ozfatura
Deniz Gunduz
FedML
43
47
0
21 Jan 2021
FedNS: Improving Federated Learning for collaborative image classification on mobile clients
Yaoxin Zhuo
Baoxin Li
FedML
21
14
0
20 Jan 2021
Activation Density based Mixed-Precision Quantization for Energy Efficient Neural Networks
Karina Vasquez
Yeshwanth Venkatesha
Abhiroop Bhattacharjee
Abhishek Moitra
Priyadarshini Panda
MQ
48
15
0
12 Jan 2021
Anytime Minibatch with Delayed Gradients
H. Al-Lawati
S. Draper
25
0
0
15 Dec 2020
CatFedAvg: Optimising Communication-efficiency and Classification Accuracy in Federated Learning
D. Sarkar
Sumit Rai
Ankur Narang
FedML
26
2
0
14 Nov 2020
Coded Computing for Low-Latency Federated Learning over Wireless Edge Networks
Saurav Prakash
S. Dhakal
M. Akdeniz
Yair Yona
S. Talwar
Salman Avestimehr
N. Himayat
FedML
35
92
0
12 Nov 2020
Improving Neural Network Training in Low Dimensional Random Bases
Frithjof Gressmann
Zach Eaton-Rosen
Carlo Luschi
30
28
0
09 Nov 2020
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
47
192
0
26 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
42
0
0
26 Aug 2020
Federated Learning for Channel Estimation in Conventional and RIS-Assisted Massive MIMO
Ahmet M. Elbir
Sinem Coleri
39
131
0
25 Aug 2020
Periodic Stochastic Gradient Descent with Momentum for Decentralized Training
Hongchang Gao
Heng-Chiao Huang
23
25
0
24 Aug 2020
Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications
Jihong Park
S. Samarakoon
Anis Elgabli
Joongheon Kim
M. Bennis
Seong-Lyun Kim
Mérouane Debbah
39
161
0
06 Aug 2020
Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge
Chaoyang He
M. Annavaram
A. Avestimehr
FedML
32
23
0
28 Jul 2020
Breaking the Communication-Privacy-Accuracy Trilemma
Wei-Ning Chen
Peter Kairouz
Ayfer Özgür
14
116
0
22 Jul 2020
Byzantine-Resilient Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
19
238
0
21 Jul 2020
Incentives for Federated Learning: a Hypothesis Elicitation Approach
Yang Liu
Jiaheng Wei
FedML
42
21
0
21 Jul 2020
Deep Anomaly Detection for Time-series Data in Industrial IoT: A Communication-Efficient On-device Federated Learning Approach
Yi Liu
S. Garg
Jiangtian Nie
Yan Zhang
Zehui Xiong
Jiawen Kang
M. S. Hossain
FedML
39
378
0
19 Jul 2020
DS-Sync: Addressing Network Bottlenecks with Divide-and-Shuffle Synchronization for Distributed DNN Training
Weiyan Wang
Cengguang Zhang
Liu Yang
Kai Chen
Kun Tan
31
12
0
07 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
42
274
0
02 Jul 2020
Is Network the Bottleneck of Distributed Training?
Zhen Zhang
Chaokun Chang
Yanghua Peng
Yida Wang
R. Arora
Xin Jin
25
70
0
17 Jun 2020
Previous
1
2
3
Next