Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.02132
Cited By
QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding
7 October 2016
Dan Alistarh
Demjan Grubic
Jerry Li
Ryota Tomioka
Milan Vojnović
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding"
50 / 128 papers shown
Title
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
82
4
0
01 Aug 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
36
7
0
12 May 2023
FedREP: A Byzantine-Robust, Communication-Efficient and Privacy-Preserving Framework for Federated Learning
Yi-Rui Yang
Kun Wang
Wulu Li
FedML
52
3
0
09 Mar 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
39
6
0
08 Mar 2023
PolarAir: A Compressed Sensing Scheme for Over-the-Air Federated Learning
Michail Gkagkos
Krishna R. Narayanan
J. Chamberland
C. Georghiades
47
0
0
24 Jan 2023
Gossiped and Quantized Online Multi-Kernel Learning
Tomàs Ortega
Hamid Jafarkhani
40
5
0
24 Jan 2023
HiFlash: Communication-Efficient Hierarchical Federated Learning with Adaptive Staleness Control and Heterogeneity-aware Client-Edge Association
Qiong Wu
Xu Chen
Ouyang Tao
Zhi Zhou
Xiaoxi Zhang
Shusen Yang
Junshan Zhang
37
44
0
16 Jan 2023
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
34
6
0
31 Oct 2022
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
Artavazd Maranjyan
M. Safaryan
Peter Richtárik
39
13
0
28 Oct 2022
Communication-Efficient Adam-Type Algorithms for Distributed Data Mining
Wenhan Xian
Feihu Huang
Heng-Chiao Huang
FedML
35
0
0
14 Oct 2022
Empirical Analysis on Top-k Gradient Sparsification for Distributed Deep Learning in a Supercomputing Environment
Daegun Yoon
Sangyoon Oh
26
0
0
18 Sep 2022
Quantization for decentralized learning under subspace constraints
Roula Nassif
Stefan Vlaski
Marco Carpentiero
Vincenzo Matta
Marc Antonini
Ali H. Sayed
30
29
0
16 Sep 2022
A Fast Blockchain-based Federated Learning Framework with Compressed Communications
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
FedML
22
23
0
12 Aug 2022
FedOBD: Opportunistic Block Dropout for Efficiently Training Large-scale Neural Networks through Federated Learning
Yuanyuan Chen
Zichen Chen
Pengcheng Wu
Han Yu
AI4CE
22
18
0
10 Aug 2022
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
66
60
0
02 Aug 2022
Content Popularity Prediction Based on Quantized Federated Bayesian Learning in Fog Radio Access Networks
Yu Tao
Yanxiang Jiang
F. Zheng
Pengcheng Zhu
Dusit Niyato
X. You
44
6
0
23 Jun 2022
Efficient Adaptive Federated Optimization of Federated Learning for IoT
Zunming Chen
Hongyan Cui
Ensen Wu
Yu Xi
32
0
0
23 Jun 2022
sqSGD: Locally Private and Communication Efficient Federated Learning
Yan Feng
Tao Xiong
Ruofan Wu
Lingjuan Lv
Leilei Shi
FedML
31
2
0
21 Jun 2022
Federated Optimization Algorithms with Random Reshuffling and Gradient Compression
Abdurakhmon Sadiev
Grigory Malinovsky
Eduard A. Gorbunov
Igor Sokolov
Ahmed Khaled
Konstantin Burlachenko
Peter Richtárik
FedML
21
21
0
14 Jun 2022
Private Federated Submodel Learning with Sparsification
Sajani Vithana
S. Ulukus
FedML
33
10
0
31 May 2022
Communication-Efficient Distributionally Robust Decentralized Learning
Matteo Zecchin
Marios Kountouris
David Gesbert
30
9
0
31 May 2022
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Michael G. Rabbat
Carole-Jean Wu
FedML
51
31
0
30 May 2022
Encoded Gradients Aggregation against Gradient Leakage in Federated Learning
Dun Zeng
Shiyu Liu
Siqi Liang
Zonghang Li
Hongya Wang
Irwin King
Zenglin Xu
FedML
34
0
0
26 May 2022
Tighter Regret Analysis and Optimization of Online Federated Learning
Dohyeok Kwon
Jonghwan Park
Songnam Hong
35
12
0
13 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
29
10
0
08 May 2022
PICASSO: Unleashing the Potential of GPU-centric Training for Wide-and-deep Recommender Systems
Yuanxing Zhang
Langshi Chen
Siran Yang
Man Yuan
Hui-juan Yi
...
Yong Li
Dingyang Zhang
Wei Lin
Lin Qu
Bo Zheng
43
32
0
11 Apr 2022
Optimising Communication Overhead in Federated Learning Using NSGA-II
José Á. Morell
Z. Dahi
Francisco Chicano
Gabriel Luque
Enrique Alba
FedML
35
11
0
01 Apr 2022
Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
35
3
0
22 Mar 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
24
49
0
15 Feb 2022
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
53
18
0
07 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
42
15
0
05 Feb 2022
TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs
Weiyang Wang
Moein Khazraee
Zhizhen Zhong
M. Ghobadi
Zhihao Jia
Dheevatsa Mudigere
Ying Zhang
A. Kewitsch
39
85
0
01 Feb 2022
Recycling Model Updates in Federated Learning: Are Gradient Subspaces Low-Rank?
Sheikh Shams Azam
Seyyedali Hosseinalipour
Qiang Qiu
Christopher G. Brinton
FedML
36
20
0
01 Feb 2022
Communication-Efficient Device Scheduling for Federated Learning Using Stochastic Optimization
Jake B. Perazzone
Shiqiang Wang
Mingyue Ji
Kevin S. Chan
FedML
24
73
0
19 Jan 2022
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
36
8
0
09 Jan 2022
Optimizing the Communication-Accuracy Trade-off in Federated Learning with Rate-Distortion Theory
Nicole Mitchell
Johannes Ballé
Zachary B. Charles
Jakub Konecný
FedML
19
21
0
07 Jan 2022
Accurate Neural Training with 4-bit Matrix Multiplications at Standard Formats
Brian Chmiel
Ron Banner
Elad Hoffer
Hilla Ben Yaacov
Daniel Soudry
MQ
33
23
0
19 Dec 2021
Optimal Rate Adaption in Federated Learning with Compressed Communications
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
Jiangchuan Liu
FedML
42
40
0
13 Dec 2021
Collaborative Learning over Wireless Networks: An Introductory Overview
Emre Ozfatura
Deniz Gunduz
H. Vincent Poor
30
11
0
07 Dec 2021
Wyner-Ziv Gradient Compression for Federated Learning
Kai Liang
Huiru Zhong
Haoning Chen
Youlong Wu
FedML
29
8
0
16 Nov 2021
FedGreen: Federated Learning with Fine-Grained Gradient Compression for Green Mobile Edge Computing
Peichun Li
Xumin Huang
Miao Pan
Rong Yu
50
15
0
11 Nov 2021
Solving Multi-Arm Bandit Using a Few Bits of Communication
Osama A. Hanna
Lin F. Yang
Christina Fragouli
29
16
0
11 Nov 2021
Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning
Xun Qian
Rustem Islamov
M. Safaryan
Peter Richtárik
FedML
24
23
0
02 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
32
14
0
01 Nov 2021
Optimal Compression of Locally Differentially Private Mechanisms
Abhin Shah
Wei-Ning Chen
Johannes Ballé
Peter Kairouz
Lucas Theis
35
42
0
29 Oct 2021
BEV-SGD: Best Effort Voting SGD for Analog Aggregation Based Federated Learning against Byzantine Attackers
Xin-Yue Fan
Yue Wang
Yan Huo
Zhi Tian
FedML
27
23
0
18 Oct 2021
Trade-offs of Local SGD at Scale: An Empirical Study
Jose Javier Gonzalez Ortiz
Jonathan Frankle
Michael G. Rabbat
Ari S. Morcos
Nicolas Ballas
FedML
43
19
0
15 Oct 2021
Leveraging Spatial and Temporal Correlations in Sparsified Mean Estimation
Divyansh Jhunjhunwala
Ankur Mallick
Advait Gadhikar
S. Kadhe
Gauri Joshi
24
10
0
14 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
51
46
0
07 Oct 2021
Solon: Communication-efficient Byzantine-resilient Distributed Training via Redundant Gradients
Lingjiao Chen
Leshang Chen
Hongyi Wang
S. Davidson
Yan Sun
FedML
37
1
0
04 Oct 2021
1
2
3
Next