Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.01239
Cited By
Adversary Resistant Deep Neural Networks with an Application to Malware Detection
5 October 2016
Qinglong Wang
Wenbo Guo
Kaixuan Zhang
Alexander Ororbia
Masashi Sugiyama
C. Lee Giles
Xue Liu
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversary Resistant Deep Neural Networks with an Application to Malware Detection"
21 / 21 papers shown
Title
Frontier AI's Impact on the Cybersecurity Landscape
Wenbo Guo
Yujin Potter
Tianneng Shi
Zhun Wang
Andy Zhang
Dawn Song
57
2
0
07 Apr 2025
A Survey on Poisoning Attacks Against Supervised Machine Learning
Wenjun Qiu
AAML
36
9
0
05 Feb 2022
Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things
Yansong Gao
Minki Kim
Chandra Thapa
Sharif Abuadbba
Zhi-Li Zhang
S. Çamtepe
Hyoungshick Kim
Surya Nepal
30
59
0
03 Mar 2021
HaS-Nets: A Heal and Select Mechanism to Defend DNNs Against Backdoor Attacks for Data Collection Scenarios
Hassan Ali
Surya Nepal
S. Kanhere
S. Jha
AAML
27
12
0
14 Dec 2020
Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review
Yansong Gao
Bao Gia Doan
Zhi-Li Zhang
Siqi Ma
Jiliang Zhang
Anmin Fu
Surya Nepal
Hyoungshick Kim
AAML
36
221
0
21 Jul 2020
Odyssey: Creation, Analysis and Detection of Trojan Models
Marzieh Edraki
Nazmul Karim
Nazanin Rahnavard
Ajmal Mian
M. Shah
AAML
28
13
0
16 Jul 2020
Arms Race in Adversarial Malware Detection: A Survey
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
24
52
0
24 May 2020
PoisHygiene: Detecting and Mitigating Poisoning Attacks in Neural Networks
Junfeng Guo
Zelun Kong
Cong Liu
AAML
27
1
0
24 Mar 2020
COPYCAT: Practical Adversarial Attacks on Visualization-Based Malware Detection
Aminollah Khormali
Ahmed A. Abusnaina
Songqing Chen
Daehun Nyang
Aziz Mohaisen
AAML
34
28
0
20 Sep 2019
Februus: Input Purification Defense Against Trojan Attacks on Deep Neural Network Systems
Bao Gia Doan
Ehsan Abbasnejad
Damith C. Ranasinghe
AAML
27
66
0
09 Aug 2019
Adversarial Learning in Statistical Classification: A Comprehensive Review of Defenses Against Attacks
David J. Miller
Zhen Xiang
G. Kesidis
AAML
19
35
0
12 Apr 2019
Deep Learning for Anomaly Detection: A Survey
Raghavendra Chalapathy
Sanjay Chawla
AI4TS
41
1,479
0
10 Jan 2019
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach
Tsui-Wei Weng
Pin-Yu Chen
Lam M. Nguyen
M. Squillante
Ivan Oseledets
Luca Daniel
AAML
21
30
0
18 Dec 2018
Verification of Recurrent Neural Networks Through Rule Extraction
Qinglong Wang
Kaixuan Zhang
Xue Liu
C. Lee Giles
AAML
28
18
0
14 Nov 2018
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
28
21
0
18 Sep 2018
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction
Jianguo Zhang
Ji Wang
Lifang He
Zhao Li
Philip S. Yu
29
31
0
11 Sep 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
50
686
0
25 Apr 2018
Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction
Bin Liang
Hongcheng Li
Miaoqiang Su
Xirong Li
Wenchang Shi
Xiaofeng Wang
AAML
14
215
0
23 May 2017
Blocking Transferability of Adversarial Examples in Black-Box Learning Systems
Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
AAML
30
106
0
13 Mar 2017
Dense Associative Memory is Robust to Adversarial Inputs
Dmitry Krotov
J. Hopfield
AAML
28
111
0
04 Jan 2017
1