ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.00970
  4. Cited By
Stochastic Optimization with Variance Reduction for Infinite Datasets
  with Finite-Sum Structure

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure

4 October 2016
A. Bietti
Julien Mairal
ArXivPDFHTML

Papers citing "Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure"

9 / 9 papers shown
Title
Demystifying SGD with Doubly Stochastic Gradients
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
53
0
0
03 Jun 2024
The Stochastic Proximal Distance Algorithm
The Stochastic Proximal Distance Algorithm
Hao Jiang
Jason Xu
27
0
0
21 Oct 2022
Federated Variance-Reduced Stochastic Gradient Descent with Robustness
  to Byzantine Attacks
Federated Variance-Reduced Stochastic Gradient Descent with Robustness to Byzantine Attacks
Zhaoxian Wu
Qing Ling
Tianyi Chen
G. Giannakis
FedML
AAML
32
181
0
29 Dec 2019
On the Ineffectiveness of Variance Reduced Optimization for Deep
  Learning
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
15
112
0
11 Dec 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Stochastic Variance-Reduced Policy Gradient
Stochastic Variance-Reduced Policy Gradient
Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
11
174
0
14 Jun 2018
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to
  Large-Scale Machine Learning
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
76
317
0
18 Feb 2014
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
126
259
0
10 Dec 2012
1