Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1609.07152
Cited By
Input Convex Neural Networks
22 September 2016
Brandon Amos
Lei Xu
J. Zico Kolter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Input Convex Neural Networks"
50 / 112 papers shown
Title
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
48
50
0
04 Oct 2022
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows
G. Morel
Lucas Drumetz
Simon Benaïchouche
Nicolas Courty
F. Rousseau
OT
30
6
0
22 Sep 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Learning differentiable solvers for systems with hard constraints
Geoffrey Negiar
Michael W. Mahoney
Aditi S. Krishnapriyan
26
28
0
18 Jul 2022
Landscape Learning for Neural Network Inversion
Ruoshi Liu
Chen-Guang Mao
Purva Tendulkar
Hongya Wang
Carl Vondrick
32
8
0
17 Jun 2022
Dual Convexified Convolutional Neural Networks
Site Bai
Chuyang Ke
Jean Honorio
24
1
0
27 May 2022
Neural Lyapunov Differentiable Predictive Control
Sayak Mukherjee
Ján Drgoňa
Aaron Tuor
M. Halappanavar
D. Vrabie
37
13
0
22 May 2022
NN-EUCLID: deep-learning hyperelasticity without stress data
Prakash Thakolkaran
Akshay Joshi
Yiwen Zheng
Moritz Flaschel
L. Lorenzis
Siddhant Kumar
24
98
0
04 May 2022
An Optimal Transport Formulation of Bayes' Law for Nonlinear Filtering Algorithms
Amirhossein Taghvaei
Bamdad Hosseini
OT
34
17
0
22 Mar 2022
Learning Stabilizable Deep Dynamics Models
Kenji Kashima
Ryota Yoshiuchi
Yutaka Kawano
19
4
0
18 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Equilibrium Aggregation: Encoding Sets via Optimization
Sergey Bartunov
F. Fuchs
Timothy Lillicrap
19
7
0
25 Feb 2022
Multivariate Quantile Function Forecaster
Kelvin K. Kan
Franccois-Xavier Aubet
Tim Januschowski
Youngsuk Park
Konstantinos Benidis
Lars Ruthotto
Jan Gasthaus
AI4TS
39
22
0
23 Feb 2022
Global Optimization Networks
Sen Zhao
Erez Louidor Ilan
Oleksandr Mangylov
Maya R. Gupta
18
5
0
02 Feb 2022
Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions
Aaron Mishkin
Arda Sahiner
Mert Pilanci
OffRL
77
30
0
02 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Wasserstein Iterative Networks for Barycenter Estimation
Alexander Korotin
Vage Egiazarian
Lingxiao Li
Evgeny Burnaev
29
24
0
28 Jan 2022
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
Input Convex Gradient Networks
Jack Richter-Powell
Jonathan Lorraine
Brandon Amos
12
15
0
23 Nov 2021
Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC
Felix Bünning
B. Huber
Adrian Schalbetter
Ahmed Aboudonia
Mathias Hudoba de Badyn
Philipp Heer
Roy S. Smith
John Lygeros
AI4CE
14
65
0
29 Oct 2021
Learning Stable Deep Dynamics Models for Partially Observed or Delayed Dynamical Systems
Andreas Schlaginhaufen
Philippe Wenk
Andreas Krause
Florian Dorfler
27
15
0
27 Oct 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
31
21
0
21 Oct 2021
Continuous Control with Action Quantization from Demonstrations
Robert Dadashi
Léonard Hussenot
Damien Vincent
Sertan Girgin
Anton Raichuk
M. Geist
Olivier Pietquin
OffRL
26
23
0
19 Oct 2021
Offline Reinforcement Learning for Autonomous Driving with Safety and Exploration Enhancement
Tianyu Shi
Dong Chen
Kaian Chen
Zhaojian Li
OffRL
18
31
0
13 Oct 2021
Solving the Dirichlet problem for the Monge-Ampère equation using neural networks
K. Nystrom
Matias Vestberg
31
2
0
07 Oct 2021
Generative Modeling with Optimal Transport Maps
Litu Rout
Alexander Korotin
Evgeny Burnaev
OT
DiffM
122
65
0
06 Oct 2021
Optimization with Constraint Learning: A Framework and Survey
Adejuyigbe O. Fajemisin
Donato Maragno
D. Hertog
58
46
0
05 Oct 2021
Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations
Vahidullah Tac
F. Sahli Costabal
A. B. Tepole
AI4CE
44
69
0
03 Oct 2021
Learning Energy-Based Approximate Inference Networks for Structured Applications in NLP
Lifu Tu
BDL
35
0
0
27 Aug 2021
Polyconvex anisotropic hyperelasticity with neural networks
Dominik K. Klein
Mauricio Fernández
Robert J. Martin
P. Neff
Oliver Weeger
33
151
0
20 Jun 2021
Riemannian Convex Potential Maps
Samuel N. Cohen
Brandon Amos
Y. Lipman
18
22
0
18 Jun 2021
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
43
81
0
11 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
52
0
01 Jun 2021
Learning Deep Energy Shaping Policies for Stability-Guaranteed Manipulation
S. A. Khader
Hang Yin
Pietro Falco
Danica Kragic
8
12
0
30 Mar 2021
Almost Surely Stable Deep Dynamics
Nathan P. Lawrence
Philip D. Loewen
M. Forbes
Johan U. Backstrom
R. Bhushan Gopaluni
BDL
32
20
0
26 Mar 2021
Foresee then Evaluate: Decomposing Value Estimation with Latent Future Prediction
Hongyao Tang
Jianye Hao
Guangyong Chen
Pengfei Chen
C. L. P. Chen
Yaodong Yang
Lu Zhang
Wulong Liu
Zhaopeng Meng
OffRL
27
4
0
03 Mar 2021
Data-Driven Random Access Optimization in Multi-Cell IoT Networks with NOMA
Sami Khairy
Prasanna Balaprakash
L. Cai
H. Vincent Poor
24
6
0
02 Jan 2021
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Input Convex Neural Networks for Building MPC
Felix Bünning
Adrian Schalbetter
Ahmed Aboudonia
Mathias Hudoba de Badyn
Philipp Heer
John Lygeros
20
39
0
26 Nov 2020
State space models for building control: how deep should you go?
B. Schubnel
R. Carrillo
Paolo Taddeo
L. C. Casals
J. Salom
Y. Stauffer
P. Alet
17
14
0
23 Oct 2020
Reinforcement Learning with Combinatorial Actions: An Application to Vehicle Routing
A. Delarue
Ross Anderson
Christian Tjandraatmadja
19
92
0
22 Oct 2020
f
f
f
-GAIL: Learning
f
f
f
-Divergence for Generative Adversarial Imitation Learning
Xin Zhang
Yanhua Li
Ziming Zhang
Zhi-Li Zhang
21
31
0
02 Oct 2020
Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-equilibrium Flows
Juntao Huang
Zhiting Ma
Y. Zhou
W. Yong
AI4CE
30
16
0
28 Sep 2020
Sampling-based Reachability Analysis: A Random Set Theory Approach with Adversarial Sampling
T. Lew
Marco Pavone
AAML
17
53
0
24 Aug 2020
Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks
JiaoJiao Fan
Amirhossein Taghvaei
Yongxin Chen
34
56
0
08 Jul 2020
Automatically Learning Compact Quality-aware Surrogates for Optimization Problems
Kai Wang
Bryan Wilder
Andrew Perrault
Milind Tambe
21
28
0
18 Jun 2020
Counterexample-Guided Learning of Monotonic Neural Networks
Aishwarya Sivaraman
G. Farnadi
T. Millstein
Guy Van den Broeck
24
50
0
16 Jun 2020
The Curious Case of Convex Neural Networks
S. Sivaprasad
Ankur Singh
Naresh Manwani
Vineet Gandhi
37
26
0
09 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
30
83
0
18 May 2020
Physarum Powered Differentiable Linear Programming Layers and Applications
Zihang Meng
Sathya Ravi
Vikas Singh
19
5
0
30 Apr 2020
Previous
1
2
3
Next